A Numerical Simulation for Darcy-Forchheimer Flow of Nanofluid By A Rotating Disk With Partial Slip Effects
Loading...
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media S.A.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
This study examines Darcy-Forchheimer 3D nanoliquid flow caused by a rotating disk with heat generation/absorption. The impacts of Brownian motion and thermophoretic are considered. Velocity, concentration, and thermal slips at the surface of the rotating disk are considered. The change from the non-linear partial differential framework to the non-linear ordinary differential framework is accomplished by utilizing appropriate variables. A shooting technique is utilized to develop a numerical solution of the resulting framework. Graphs have been sketched to examine how the concentration and temperature fields are affected by several pertinent flow parameters. Skin friction and local Sherwood and Nusselt numbers are additionally plotted and analyzed. Furthermore, the concentration and temperature fields are enhanced for larger values of the thermophoresis parameter. © Copyright © 2020 Ullah, Serra-Capizzano and Baleanu.
Description
Keywords
Darcy-Forchheimer Flow, Heat Absorption/Generation, Nanoparticles, Numerical Solution, Rotating Disk, Slip Conditions
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Ullah, M.Z.; Serra-Capizzano, S.; Baleanu, D.,"A Numerical Simulation for Darcy-Forchheimer Flow of Nanofluid By A Rotating Disk With Partial Slip Effects", Frontiers in Physics, Vol. 7, (2020).
WoS Q
Scopus Q
Source
Frontiers in Physics
Volume
7