Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Semi-Analytical Method To Solve Family of Kuramoto–sivashinsky Equations

dc.contributor.author Khan, H.
dc.contributor.author Baleanu, D.
dc.contributor.author Kumam, P.
dc.contributor.author Arif, M.
dc.contributor.author Shah, R.
dc.date.accessioned 2021-02-10T11:57:11Z
dc.date.accessioned 2025-09-18T15:43:37Z
dc.date.available 2021-02-10T11:57:11Z
dc.date.available 2025-09-18T15:43:37Z
dc.date.issued 2020
dc.description.abstract In this article, a semi-analytical technique is implemented to solve Kuramoto–Sivashinsky equations. The present method is the combination of two well-known methods namely Laplace transform method and variational iteration method. This hybrid property of the proposed method reduces the numbers of calculations and materials. The accuracy and applicability of the suggested method is confirmed through illustration examples. The accuracy of the proposed method is described in terms of absolute error. It is investigated through graphs and tables that the Laplace transformation and variational iteration method (LVIM) solutions are in good agreement with the exact solution of the problems. The LVIM solutions are also obtained at different fractional-order of the derivative. It is observed through graphs and tables that the fractional-order solutions are convergent to an integer solution as fractional-orders approaches to an integer-order of the problems. In conclusion, the overall implementation of the present method support the validity of the suggested method. Due to simple, straightforward and accurate implementation, the present method can be extended to other non-linear fractional partial differential equations. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. en_US
dc.description.sponsorship Center of Excellence in Theoretical and Computational Science; King Mongkut's University of Technology Thonburi, KMUTT en_US
dc.identifier.citation Shah, Rasool...et al. (2020). "A semi-analytical method to solve family of Kuramoto-Sivashinsky equations", Journal of Taibah University For Science, Vol. 14, No. 1, pp. 402-411. en_US
dc.identifier.doi 10.1080/16583655.2020.1741920
dc.identifier.issn 1658-3655
dc.identifier.scopus 2-s2.0-85085919900
dc.identifier.uri https://doi.org/10.1080/16583655.2020.1741920
dc.identifier.uri https://hdl.handle.net/20.500.12416/13980
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.ispartof Journal of Taibah University for Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Kuramoto–Sivashinsky Equations en_US
dc.subject Lagrange Multiplier en_US
dc.subject Laplace Transform en_US
dc.subject Variational Iteration Method en_US
dc.title A Semi-Analytical Method To Solve Family of Kuramoto–sivashinsky Equations en_US
dc.title A semi-analytical method to solve family of Kuramoto-Sivashinsky equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57206692659
gdc.author.scopusid 57207242937
gdc.author.scopusid 7005872966
gdc.author.scopusid 15056385100
gdc.author.scopusid 57619099500
gdc.author.yokid 56389
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Shah R., Department of Mathematics, Abdul Wali khan University, Mardan, Pakistan; Khan H., Department of Mathematics, Abdul Wali khan University, Mardan, Pakistan; Baleanu D., Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania; Kumam P., Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Arif M., Department of Mathematics, Abdul Wali khan University, Mardan, Pakistan en_US
gdc.description.endpage 411 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 402 en_US
gdc.description.volume 14 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3010902029
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 32.0
gdc.oaire.influence 4.3196726E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Q1-390
gdc.oaire.keywords Science (General)
gdc.oaire.keywords kuramoto–sivashinsky equations
gdc.oaire.keywords variational iteration method
gdc.oaire.keywords laplace transform
gdc.oaire.keywords lagrange multiplier
gdc.oaire.popularity 2.8784838E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.17472174
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 34
gdc.plumx.crossrefcites 39
gdc.plumx.facebookshareslikecount 56
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 46
gdc.publishedmonth 1
gdc.scopus.citedcount 46
gdc.virtual.author Baleanu, Dumitru
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files