Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Collocation methods for fractional differential equations involving non-singular kernel

dc.authorscopusid 7005872966
dc.authorscopusid 55614612800
dc.authorwosid Shiri, Babak/T-7172-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, D.
dc.contributor.author Shiri, B.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-03-18T13:48:45Z
dc.date.available 2020-03-18T13:48:45Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Baleanu, D.] Hohai Univ, Inst Soft Matter Mech, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iran en_US
dc.description.abstract A system of fractional differential equations involving non-singular Mittag-Leffler kernel is considered. This system is transformed to a type of weakly singular integral equations in which the weak singular kernel is involved with both the unknown and known functions. The regularity and existence of its solution is studied. The collocation methods on discontinuous piecewise polynomial space are considered. The convergence and superconvergence properties of the introduced methods are derived on graded meshes. Numerical results provided to show that our theoretical convergence bounds are often sharp and the introduced methods are efficient. Some comparisons and applications are discussed. (C) 2018 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 11
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, D.; Shiri, B., "Collocation methods for fractional differential equations involving non-singular kernel", Chaos Solitons & Fractals, Vol. 116, pp. 136-145, (2018). en_US
dc.identifier.doi 10.1016/j.chaos.2018.09.020
dc.identifier.endpage 145 en_US
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-85053805425
dc.identifier.scopusquality Q1
dc.identifier.startpage 136 en_US
dc.identifier.uri https://doi.org/10.1016/j.chaos.2018.09.020
dc.identifier.volume 116 en_US
dc.identifier.wos WOS:000451316600017
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 101
dc.subject System Of Fractional Differential Equations en_US
dc.subject Discontinuous Piecewise Polynomial Spaces en_US
dc.subject Operational Matrices en_US
dc.subject Mittag-Leffler Function en_US
dc.subject Collocation Methods en_US
dc.subject Diffusion Equations en_US
dc.title Collocation methods for fractional differential equations involving non-singular kernel tr_TR
dc.title Collocation Methods for Fractional Differential Equations Involving Non-Singular Kernel en_US
dc.type Article en_US
dc.wos.citedbyCount 91
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: