Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Collocation methods for fractional differential equations involving non-singular kernel

dc.authorscopusid7005872966
dc.authorscopusid55614612800
dc.authorwosidShiri, Babak/T-7172-2019
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.contributor.authorBaleanu, D.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorShiri, B.
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-03-18T13:48:45Z
dc.date.available2020-03-18T13:48:45Z
dc.date.issued2018
dc.departmentÇankaya Universityen_US
dc.department-temp[Baleanu, D.] Hohai Univ, Inst Soft Matter Mech, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iranen_US
dc.description.abstractA system of fractional differential equations involving non-singular Mittag-Leffler kernel is considered. This system is transformed to a type of weakly singular integral equations in which the weak singular kernel is involved with both the unknown and known functions. The regularity and existence of its solution is studied. The collocation methods on discontinuous piecewise polynomial space are considered. The convergence and superconvergence properties of the introduced methods are derived on graded meshes. Numerical results provided to show that our theoretical convergence bounds are often sharp and the introduced methods are efficient. Some comparisons and applications are discussed. (C) 2018 Elsevier Ltd. All rights reserved.en_US
dc.description.publishedMonth11
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationBaleanu, D.; Shiri, B., "Collocation methods for fractional differential equations involving non-singular kernel", Chaos Solitons & Fractals, Vol. 116, pp. 136-145, (2018).en_US
dc.identifier.doi10.1016/j.chaos.2018.09.020
dc.identifier.endpage145en_US
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.scopus2-s2.0-85053805425
dc.identifier.scopusqualityQ1
dc.identifier.startpage136en_US
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2018.09.020
dc.identifier.volume116en_US
dc.identifier.wosWOS:000451316600017
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSystem Of Fractional Differential Equationsen_US
dc.subjectDiscontinuous Piecewise Polynomial Spacesen_US
dc.subjectOperational Matricesen_US
dc.subjectMittag-Leffler Functionen_US
dc.subjectCollocation Methodsen_US
dc.subjectDiffusion Equationsen_US
dc.titleCollocation methods for fractional differential equations involving non-singular kerneltr_TR
dc.titleCollocation Methods for Fractional Differential Equations Involving Non-Singular Kernelen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: