Collocation methods for fractional differential equations involving non-singular kernel
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55614612800 | |
dc.authorwosid | Shiri, Babak/T-7172-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Shiri, B. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2020-03-18T13:48:45Z | |
dc.date.available | 2020-03-18T13:48:45Z | |
dc.date.issued | 2018 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, D.] Hohai Univ, Inst Soft Matter Mech, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iran | en_US |
dc.description.abstract | A system of fractional differential equations involving non-singular Mittag-Leffler kernel is considered. This system is transformed to a type of weakly singular integral equations in which the weak singular kernel is involved with both the unknown and known functions. The regularity and existence of its solution is studied. The collocation methods on discontinuous piecewise polynomial space are considered. The convergence and superconvergence properties of the introduced methods are derived on graded meshes. Numerical results provided to show that our theoretical convergence bounds are often sharp and the introduced methods are efficient. Some comparisons and applications are discussed. (C) 2018 Elsevier Ltd. All rights reserved. | en_US |
dc.description.publishedMonth | 11 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, D.; Shiri, B., "Collocation methods for fractional differential equations involving non-singular kernel", Chaos Solitons & Fractals, Vol. 116, pp. 136-145, (2018). | en_US |
dc.identifier.doi | 10.1016/j.chaos.2018.09.020 | |
dc.identifier.endpage | 145 | en_US |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.scopus | 2-s2.0-85053805425 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 136 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2018.09.020 | |
dc.identifier.volume | 116 | en_US |
dc.identifier.wos | WOS:000451316600017 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | System Of Fractional Differential Equations | en_US |
dc.subject | Discontinuous Piecewise Polynomial Spaces | en_US |
dc.subject | Operational Matrices | en_US |
dc.subject | Mittag-Leffler Function | en_US |
dc.subject | Collocation Methods | en_US |
dc.subject | Diffusion Equations | en_US |
dc.title | Collocation methods for fractional differential equations involving non-singular kernel | tr_TR |
dc.title | Collocation Methods for Fractional Differential Equations Involving Non-Singular Kernel | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: