Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Intravenous substance consumption is on the upswing all over the globe, especially in Europe and Asia. It is extremely harmful to society; excessive substance consumption is the leading cause of death. Beyond all prohibited narcotics, heroin is a narcotic that has a substantial negative impact on society and the world at large. In this paper, a heroin epidemic model is developed via an Atangana-Baleanu fractional-order derivative in the Caputo sense describe accurately real world problems, equipped with recovery and persistent immunity. Meanwhile, we have established a globally asymptotically stable equilibrium for both the drug-free and drug-addiction equilibriums. Additionally, we apply a novel scheme that is mingled with the two-step Lagrange polynomial and the basic principle of fractional calculus. The simulation results for various fractional values indicate that as the fractional order decreases from 1, the growth of the epidemic diminishes. The modelling data demonstrates that the suggested containment technique is effective in minimizing the incidence of instances in various categories. Furthermore, modelling the ideal configuration indicated that lowering the fractional-order from 1 necessitates a swift commencement of the implementation of the suggested regulatory technique at the maximum rate and sustaining it throughout a significant proportion of the pandemic time frame.

Description

Ahmad, Abdulaziz Garba/0000-0002-2999-7751

Keywords

Fractional Heroin Epidemic Model, Atangana-Baleanu Fractional Derivative Operator, Reproduction Number, Numerical Solutions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Rashid, Saima;...et.al. (2022). "New numerical dynamics of the heroin epidemic model using a fractional derivative with Mittag-Leffler kernel and consequences for control mechanisms", Results in Physics, Vol.35.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

35

Issue

Start Page

End Page