Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions
dc.authorid | Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138 | |
dc.authorid | Mukheimer, Aiman/0000-0001-8798-3297 | |
dc.authorid | Abdeljawad, Thabet/0000-0002-8889-3768 | |
dc.authorscopusid | 6508051762 | |
dc.authorscopusid | 13105947900 | |
dc.authorscopusid | 6507307858 | |
dc.authorscopusid | 35225400000 | |
dc.authorwosid | Mukheimer, Aiman/T-8352-2018 | |
dc.authorwosid | Alzabut, Prof. Dr. Jehad/T-8075-2018 | |
dc.authorwosid | Abdeljawad, Thabet/T-8298-2018 | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Abdeljawad, T. | |
dc.contributor.author | Alzabut, J. O. | |
dc.contributor.author | Alzabut, Jehad | |
dc.contributor.author | Mukheimer, A. | |
dc.contributor.author | Zaidan, Y. | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2017-03-14T08:18:41Z | |
dc.date.available | 2017-03-14T08:18:41Z | |
dc.date.issued | 2013 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Abdeljawad, T.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Abdeljawad, T.; Alzabut, J. O.; Mukheimer, A.; Zaidan, Y.] Prince Sultan Univ, Dept Math & Phys Sci, Riyadh 11586, Saudi Arabia; [Zaidan, Y.] Univ Wisconsin Fox Valley, Dept Math, Menasha, WI 54952 USA | en_US |
dc.description | Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138; Mukheimer, Aiman/0000-0001-8798-3297; Abdeljawad, Thabet/0000-0002-8889-3768 | en_US |
dc.description.abstract | The existence of best proximity points for cyclical type contraction mappings is proved in the category of partial metric spaces. The concept of 0-boundedly compact is introduced and used in the cyclical decomposition. Some possible generalizations to the main results are discussed. Further, illustrative examples are given to demonstrate the effectiveness of our results. | en_US |
dc.description.publishedMonth | 5 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Abdeljawad, T...et al. (2013). Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions. Journal of Computational Analysis and Application, 15(4), 678-685. | en_US |
dc.identifier.endpage | 685 | en_US |
dc.identifier.issn | 1521-1398 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-84876847843 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 678 | en_US |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000315700300008 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Eudoxus Press, Llc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 13 | |
dc.subject | Partial Metric Space | en_US |
dc.subject | Best Proximity Point | en_US |
dc.subject | Cyclic Mapping | en_US |
dc.subject | Banach Contraction Principle | en_US |
dc.subject | Boundedly Compact Set | en_US |
dc.subject | 0-Compact Set | en_US |
dc.subject | Phi-Cyclical Contraction | en_US |
dc.title | Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions | tr_TR |
dc.title | Best Proximity Points for Cyclical Contraction Mappings With 0-Boundedly Compact Decompositions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 17 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
relation.isAuthorOfPublication | 4dd7fc50-11d9-47ee-93c1-632016879f5e | |
relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: