Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0.8W0.2Al) against an oxide such as NaCO2O4

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

An analysis of the thermoelectric characteristics of certain recently discovered materials is carried out in this investigation. The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0.8W0.2Al) applied to a silicon crystal is compared to new inorganic thermoelectric materials, which are mosly oxides like NaCO2O4. For both materials, the thermoelectric effects, Seebeck effect, Peltier effect, Thomson effect, and Kelvin relations are described. The cooling rate's influence on the energy balance is also assessed. The traditional thermoelectric materials provided are mostly made up of toxic, rare and/or expensive elements, which makes large-scale thermoelectric generator integration difficult. In recent decades, research has shifted toward the development of novel materials with a better price-to-performance ratio. Despite a low conversion yield, the family of oxides offers significant benefits in this respect, which are particularly evident at high temperatures. The findings of our study indicated that Fe2V0.8W0.2 applied to a silicon crystal has good thermoelectric characteristics. A sufficient merit factor was found in the new substance under investigation.

Description

Keywords

Thermoelectric Generators, Thermoelectric Materials, Design of Materials, Inorganic Material, Merit Factor

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Sifi, Ibtissem...et al. (2021). "Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0.8W0.2Al) against an oxide such as NaCO2O4", Optik, Vol. 247.

WoS Q

Scopus Q

Source

Optik

Volume

247

Issue

Start Page

End Page