Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Solving Helmholtz Equation with Local Fractional Derivative Operators

dc.authorid Jassim, Hassan Kamil/0000-0001-5715-7752
dc.authorscopusid 7005872966
dc.authorscopusid 56020904800
dc.authorscopusid 57045880100
dc.authorwosid Jassim, Hassan/X-7743-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jassim, Hassan Kamil
dc.contributor.author Al Qurashi, Maysaa
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2019-12-25T13:13:07Z
dc.date.available 2019-12-25T13:13:07Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 077125, Romania; [Baleanu, Dumitru] Tshwane Univ Technol, Fac Sci, Dept Math & Stat, Private Bag X680, ZA-0001 Pretoria, South Africa; [Jassim, Hassan Kamil] Univ Thi Qar, Dept Math, Fac Educ Pure Sci, Nasiriyah 64001, Iraq; [Al Qurashi, Maysaa] King Saud Univ, Coll Sci, Dept Math, POB 2454, Ryad 11451, Saudi Arabia en_US
dc.description Jassim, Hassan Kamil/0000-0001-5715-7752 en_US
dc.description.abstract The paper presents a new analytical method called the local fractional Laplace variational iteration method (LFLVIM), which is a combination of the local fractional Laplace transform (LFLT) and the local fractional variational iteration method (LFVIM), for solving the two-dimensional Helmholtz and coupled Helmholtz equations with local fractional derivative operators (LFDOs). The operators are taken in the local fractional sense. Two test problems are presented to demonstrate the efficiency and the accuracy of the proposed method. The approximate solutions obtained are compared with the results obtained by the local fractional Laplace decomposition method (LFLDM). The results reveal that the LFLVIM is very effective and convenient to solve linear and nonlinear PDEs. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Jassim, Hassan Kamil; Al Qurashi, Maysaa, "Solving Helmholtz Equation with Local Fractional Derivative Operators", Fractal and Fractional, Vol. 3, No. 3, (September 2019). en_US
dc.identifier.doi 10.3390/fractalfract3030043
dc.identifier.issn 2504-3110
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85089847200
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.3390/fractalfract3030043
dc.identifier.volume 3 en_US
dc.identifier.wos WOS:000488110800007
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 53
dc.subject Coupled Helmholtz Equation en_US
dc.subject Local Fractional Variational Iteration Method en_US
dc.subject Local Fractional Laplace Transform (Lflt) en_US
dc.title Solving Helmholtz Equation with Local Fractional Derivative Operators tr_TR
dc.title Solving Helmholtz Equation With Local Fractional Derivative Operators en_US
dc.type Article en_US
dc.wos.citedbyCount 31
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu,Dumitru.pdf
Size:
3.99 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: