Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Multicriteria Decision-Making Approach for Aggregation Operators of Pythagorean Fuzzy Hypersoft Sets

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The Pythagorean fuzzy hypersoft set (PFHSS) is the most advanced extension of the intuitionistic fuzzy hypersoft set (IFHSS) and a suitable extension of the Pythagorean fuzzy soft set. In it, we discuss the parameterized family that contracts with the multi-subattributes of the parameters. The PFHSS is used to correctly assess insufficiencies, anxiety, and hesitancy in decision-making (DM). It is the most substantial notion for relating fuzzy data in the DM procedure, which can accommodate more uncertainty compared to available techniques considering membership and nonmembership values of each subattribute of given parameters. In this paper, we will present the operational laws for Pythagorean fuzzy hypersoft numbers (PFHSNs) and also some fundamental properties such as idempotency, boundedness, shift-invariance, and homogeneity for Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators. Furthermore, a novel multicriteria decision-making (MCDM) approach has been established utilizing presented aggregation operators (AOs) to resolve decision-making complications. To validate the useability and pragmatism of the settled technique, a brief comparative analysis has been conducted with some existing approaches.

Description

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Siddique, Imran...et al. (2021). "Multicriteria Decision-Making Approach for Aggregation Operators of Pythagorean Fuzzy Hypersoft Sets", COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, Vol. 2021.

WoS Q

Scopus Q

Source

COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE

Volume

2021

Issue

Start Page

End Page