Nonlinear Generalized Fractional Differential Equations With Generalized Fractional Integral Conditions
| dc.contributor.author | Ravichandran, Chokkalingam | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Belmor, Samiha | |
| dc.contributor.authorID | 234808 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-08-24T08:34:55Z | |
| dc.date.accessioned | 2025-09-18T12:49:23Z | |
| dc.date.available | 2022-08-24T08:34:55Z | |
| dc.date.available | 2025-09-18T12:49:23Z | |
| dc.date.issued | 2020 | |
| dc.description | Belmor, Samiha/0000-0002-1659-4734; Ravichandran, Chokkalingam/0000-0003-0214-1280 | en_US |
| dc.description.abstract | This research work is dedicated to an investigation of the existence and uniqueness of a class of nonlinear psi-Caputo fractional differential equation on a finite interval , equipped with nonlinear psi-Riemann-Liouville fractional integral boundary conditions of different orders , we deal with a recently introduced psi-Caputo fractional derivative of order . The formulated problem will be transformed into an integral equation with the help of Green function. A full analysis of existence and uniqueness of solutions is proved using fixed point theorems: Leray-Schauder nonlinear alternative, Krasnoselskii and Schauder's fixed point theorems, Banach's and Boyd-Wong's contraction principles. We show that this class generalizes several other existing classes of fractional-order differential equations, and therefore the freedom of choice of the standard fractional operator. As an application, we provide an example to demonstrate the validity of our results. | en_US |
| dc.description.publishedMonth | 1 | |
| dc.identifier.citation | Belmor, Samiha; Ravichandran, Chokkalingam; Jarad, Fahd (2021). "Nonlinear generalized fractional differential equations with generalized fractional integral conditions", JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, Vol. 14, No. 1, pp. 114-123. | en_US |
| dc.identifier.doi | 10.1080/16583655.2019.1709265 | |
| dc.identifier.issn | 1658-3655 | |
| dc.identifier.scopus | 2-s2.0-85140824519 | |
| dc.identifier.uri | https://doi.org/10.1080/16583655.2019.1709265 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12350 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis Ltd | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Psi-Fractional Integral | en_US |
| dc.subject | Psi-Riemann-Liouville Fractional Derivative | en_US |
| dc.subject | Psi-Caputo Fractional Derivative | en_US |
| dc.title | Nonlinear Generalized Fractional Differential Equations With Generalized Fractional Integral Conditions | en_US |
| dc.title | Nonlinear generalized fractional differential equations with generalized fractional integral conditions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Belmor, Samiha/0000-0002-1659-4734 | |
| gdc.author.id | Ravichandran, Chokkalingam/0000-0003-0214-1280 | |
| gdc.author.institutional | Jarad, Fahd | |
| gdc.author.scopusid | 57217846605 | |
| gdc.author.scopusid | 55857082700 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.wosid | Chokkalingam, Ravichandran/Aae-1077-2022 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Belmor, Samiha] Univ Mustapha Ben Boulaid, Dept Math, Batna, Algeria; [Ravichandran, Chokkalingam] Kongunadu Arts & Sci Coll Autonomous, PG & Res Dept Math, Coimbatore, Tamil Nadu, India; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey | en_US |
| gdc.description.endpage | 123 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 114 | en_US |
| gdc.description.volume | 14 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3000304670 | |
| gdc.identifier.wos | WOS:000505788700001 | |
| gdc.openalex.fwci | 1.67308853 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.opencitations.count | 48 | |
| gdc.plumx.crossrefcites | 49 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 57 | |
| gdc.scopus.citedcount | 57 | |
| gdc.wos.citedcount | 54 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |