Solving Integral Equations by Means of Fixed Point Theory
Loading...
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
One of the most interesting tasks in mathematics is, undoubtedly, to solve any kind of equations. Naturally, this problem has occupied the minds of mathematicians since the dawn of algebra. There are hundreds of techniques for solving many classes of equations, facing the problem of finding solutions and studying whether such solutions are unique or multiple. One of the recent methodologies that is having great success in this field of study is the fixed point theory. Its iterative procedures are applicable to a great variety of contexts in which other algorithms fail. In this paper, we study a very general class of integral equations by means of a novel family of contractions in the setting of metric spaces. The main advantage of this family is the fact that its general contractivity condition can be particularized in a wide range of ways, depending on many parameters. Furthermore, such a contractivity condition involves many distinct terms that can be either adding or multiplying between them. In addition to this, the main contractivity condition makes use of the self-composition of the operator, whose associated theorems used to be more general than the corresponding ones by only using such mapping. In this setting, we demonstrate some fixed point theorems that guarantee the existence and, in some cases, the uniqueness, of fixed points that can be interpreted as solutions of the mentioned integral equations.
Description
Shahzad, Naseer/0000-0001-7155-5917; Roldan Lopez De Hierro, Antonio Francisco/0000-0002-6956-4328
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Karapınar, Erdal...et al. (2022). "Solving Integral Equations by Means of Fixed Point Theory", Journal of Function Spaces, Vol. 2022.
WoS Q
Q1
Scopus Q
Q1
Source
Volume
2022