Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel

dc.authoridKumar, Devendra/0000-0003-4249-6326
dc.authorscopusid57192576535
dc.authorscopusid55467157900
dc.authorscopusid57045880100
dc.authorscopusid7005872966
dc.authorwosidSingh, Jagdev/Aac-1015-2019
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.authorwosidKumar, Devendra/B-9638-2017
dc.contributor.authorKumar, Devendra
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorSingh, Jagdev
dc.contributor.authorAl Qurashi, Maysaa
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2019-12-16T13:29:00Z
dc.date.available2019-12-16T13:29:00Z
dc.date.issued2017
dc.departmentÇankaya Universityen_US
dc.department-temp[Kumar, Devendra; Singh, Jagdev] JECRC Univ, Dept Math, Jaipur 303905, Rajasthan, India; [Al Qurashi, Maysaa] King Saud Univ, Dept Math, Coll Sci, Riyadh, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Etimesgut, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romaniaen_US
dc.descriptionKumar, Devendra/0000-0003-4249-6326en_US
dc.description.abstractIn this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo-Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.en_US
dc.description.publishedMonth2
dc.description.sponsorshipInternational Scientific Partnership Program ISPP at King Saud University through ISPP [63]en_US
dc.description.sponsorshipThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#63.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationKumar, Devendra...et al. (2017). Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Advances in Mechanical Engineering, 9(2).en_US
dc.identifier.doi10.1177/1687814017690069
dc.identifier.issn1687-8140
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85014216574
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1177/1687814017690069
dc.identifier.volume9en_US
dc.identifier.wosWOS:000394868900025
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLogistic Equationen_US
dc.subjectNonlinear Equationen_US
dc.subjectCaputo-Fabrizio Fractional Derivativeen_US
dc.subjectUniquenessen_US
dc.subjectFixed-Point Theoremen_US
dc.titleAnalysis of logistic equation pertaining to a new fractional derivative with non-singular kerneltr_TR
dc.titleAnalysis of Logistic Equation Pertaining To a New Fractional Derivative With Non-Singular Kernelen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu,Dumitru.pdf
Size:
361.92 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: