Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A novel radial basis procedure for the SIRC epidemic delay differential model

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The purpose of this work is to construct a reliable stochastic framework for solving the SIRC delay differential epidemic system, i.e. SIRC-DDES that is based on the coronavirus dynamics. The design of radial basis (RB) transfer function with the optimization of Bayesian regularization neural network (RB-BRNN) is presented to solve the SIRC-DDES. The SIRC-DDES is classified into susceptible $ S(x) $ S(x), infected $ I(x) $ I(x), recovered $ R(x) $ R(x) and cross-immune $ C(x) $ C(x). The exactness of the RB-BRNN is performed for three cases of SIRC-DDES by using the performances of the obtained and reference results. The mean square error is reduced by using the training, testing and substantiation performances with the reference solutions. The small values of the absolute error around 10-07 to 10-08 and different statistical operator performances based on the error histogram values, transitions of state investigations, correlation and regression tests also approve the accuracy of the proposed technique.

Description

Keywords

Radial Basis, Epidemic, Bayesian Regularization, Nonlinear Model, Neuralnetworks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Sabir, Zulqurnain...et al. (2023). "A novel radial basis procedure for the SIRC epidemic delay differential model", International Journal Of Computer Mathematics, Vol.100, No. 10, pp. 2014-2025.

WoS Q

Scopus Q

Source

International Journal Of Computer Mathematics

Volume

100

Issue

10

Start Page

2014

End Page

2025