Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A New Parallel Multi-Objective Harris Hawk Algorithm for Predicting the Mortality of Covid-19 Patients

dc.contributor.author Dokeroglu, Tansel
dc.contributor.authorID 234173 tr_TR
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-11-23T08:05:00Z
dc.date.accessioned 2025-09-18T16:07:23Z
dc.date.available 2023-11-23T08:05:00Z
dc.date.available 2025-09-18T16:07:23Z
dc.date.issued 2023
dc.description.abstract Harris' Hawk Optimization (HHO) is a novel metaheuristic inspired by the collective hunting behaviors of hawks. This technique employs the flight patterns of hawks to produce (near)-optimal solutions, enhanced with feature selection, for challenging classification problems. In this study, we propose a new parallel multi-objective HHO algorithm for predicting the mortality risk of COVID-19 patients based on their symptoms. There are two objectives in this optimization problem: to reduce the number of features while increasing the accuracy of the predictions. We conduct comprehensive experiments on a recent real-world COVID-19 dataset from Kaggle. An augmented version of the COVID-19 dataset is also generated and experimentally shown to improve the quality of the solutions. Significant improvements are observed compared to existing state-of-the-art metaheuristic wrapper algorithms. We report better classification results with feature selection than when using the entire set of features. During experiments, a 98.15% prediction accuracy with a 45% reduction is achieved in the number of features. We successfully obtained new best solutions for this COVID-19 dataset. en_US
dc.description.publishedMonth 6
dc.identifier.citation Dökeroğlu, Tansel. (2023). "A new parallel multi-objective Harris hawk algorithm for predicting the mortality of COVID-19 patients", Peerj Computer Science, Vol. 9. en_US
dc.identifier.doi 10.7717/peerj-cs.1430
dc.identifier.issn 2376-5992
dc.identifier.scopus 2-s2.0-85164592319
dc.identifier.uri https://doi.org/10.7717/peerj-cs.1430
dc.identifier.uri https://hdl.handle.net/20.500.12416/14750
dc.language.iso en en_US
dc.publisher Peerj inc en_US
dc.relation.ispartof PeerJ Computer Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Classification en_US
dc.subject Harris Hawk en_US
dc.subject Parallel en_US
dc.subject Machine Learning en_US
dc.title A New Parallel Multi-Objective Harris Hawk Algorithm for Predicting the Mortality of Covid-19 Patients en_US
dc.title A new parallel multi-objective Harris hawk algorithm for predicting the mortality of COVID-19 patients tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dökeroğlu, Tansel
gdc.author.scopusid 55569137100
gdc.author.wosid Dökeroğlu, Tansel/Aaw-7857-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Dokeroglu, Tansel] Cankaya Univ, Software Engn Dept, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 9 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4380685391
gdc.identifier.pmid 37346714
gdc.identifier.wos WOS:001013506300001
gdc.openalex.fwci 0.9271649
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 0
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isAuthorOfPublication.latestForDiscovery 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files