Lattice Fractional Diffusion Equation of Random Order
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Xie, He-Ping | |
| dc.contributor.author | Zeng, Sheng-Da | |
| dc.contributor.author | Wu, Guo-Cheng | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-03-03T10:45:31Z | |
| dc.date.accessioned | 2025-09-18T14:09:08Z | |
| dc.date.available | 2020-03-03T10:45:31Z | |
| dc.date.available | 2025-09-18T14:09:08Z | |
| dc.date.issued | 2017 | |
| dc.description | Xie, Heping/0000-0002-1686-7827; Wu, Guo-Cheng/0000-0002-1946-6770; Zeng, Shengda/0000-0003-1818-842X | en_US |
| dc.description.abstract | The discrete fractional calculus is used to fractionalize difference equations. Simulations of the fractional logistic map unravel that the chaotic solution is conveniently obtained. Then a Riesz fractional difference is defined for fractional partial difference equations on discrete finite domains. A lattice fractional diffusion equation of random order is proposed to depict the complicated random dynamics and an explicit numerical formulae is derived directly from the Riesz difference. Copyright (C) 2015 John Wiley & Sons, Ltd. | en_US |
| dc.description.publishedMonth | 11 | |
| dc.description.sponsorship | National Natural Science Foundation of China [11301257, 51254002, 21336004]; National Basic Research Program of China [2013BAC12B03] | en_US |
| dc.description.sponsorship | This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11301257, 51254002, and 21336004) and the National Basic Research Program of China (Grant No. 2013BAC12B03). | en_US |
| dc.identifier.citation | Wu, Guo-Cheng...et al. (2017). "Lattice fractional diffusion equation of random order", Mathematical Methods In The Applied Sciences, Vol.40, No:17, pp.6054-6060. | en_US |
| dc.identifier.doi | 10.1002/mma.3644 | |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.issn | 1099-1476 | |
| dc.identifier.scopus | 2-s2.0-84949033228 | |
| dc.identifier.uri | https://doi.org/10.1002/mma.3644 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13288 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Discrete Fractional Calculus | en_US |
| dc.subject | Lattice Fractional Diffusion Equations | en_US |
| dc.subject | Variable Order | en_US |
| dc.subject | Riesz Difference | en_US |
| dc.title | Lattice Fractional Diffusion Equation of Random Order | en_US |
| dc.title | Lattice fractional diffusion equation of random order | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Xie, Heping/0000-0002-1686-7827 | |
| gdc.author.id | Wu, Guo-Cheng/0000-0002-1946-6770 | |
| gdc.author.id | Zeng, Shengda/0000-0003-1818-842X | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 23390775700 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57202217427 | |
| gdc.author.scopusid | 55982308000 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Wu, Guo-Cheng/T-9088-2017 | |
| gdc.author.wosid | Zeng, Shengda/Abm-7231-2022 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Wu, Guo-Cheng; Zeng, Sheng-Da] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Xie, He-Ping] Sichuan Univ, Coll Water Resource & Hydropower, Chengdu 610065, Sichuan, Peoples R China | en_US |
| gdc.description.endpage | 6060 | en_US |
| gdc.description.issue | 17 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 6054 | en_US |
| gdc.description.volume | 40 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1936360838 | |
| gdc.identifier.wos | WOS:000414353300002 | |
| gdc.openalex.fwci | 0.20982605 | |
| gdc.openalex.normalizedpercentile | 0.62 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.crossrefcites | 5 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |