Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Computation of semi-analytical solutions of fuzzy nonlinear integral equations

dc.authorid Shah, Kamal/0000-0002-8851-4844
dc.authorid Ullah, Aman/0000-0003-4021-3599
dc.authorscopusid 58847954900
dc.authorscopusid 57211122805
dc.authorscopusid 56708052700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Ullah, Aman/Aaj-6441-2021
dc.authorwosid Shah, Kamal/S-8662-2016
dc.contributor.author Ullah, Zia
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ullah, Aman
dc.contributor.author Shah, Kamal
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-30T07:48:23Z
dc.date.available 2022-03-30T07:48:23Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Ullah, Zia; Ullah, Aman; Shah, Kamal] Univ Malakand, Dept Math, Dir L, Khyber Pakhtunk, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description Shah, Kamal/0000-0002-8851-4844; Ullah, Aman/0000-0003-4021-3599 en_US
dc.description.abstract In this article, we use a fuzzy number in its parametric form to solve a fuzzy nonlinear integral equation of the second kind in the crisp case. The main theme of this article is to find a semi-analytical solution of fuzzy nonlinear integral equations. A hybrid method of Laplace transform coupled with Adomian decomposition method is used to find the solution of the fuzzy nonlinear integral equations including fuzzy nonlinear Fredholm integral equation, fuzzy nonlinear Volterra integral equation, and fuzzy nonlinear singular integral equation of Abel type kernel. We also provide some suitable examples to better understand the proposed method. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ullah, Z...et al. (2020). "Computation of semi-analytical solutions of fuzzy nonlinear integral equations", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02989-z
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85091717174
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-020-02989-z
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000576936600004
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 9
dc.subject Semi-Analytical Solution en_US
dc.subject Fuzzy Nonlinear Fredholm Integral Equation en_US
dc.subject Fuzzy Nonlinear Volterra Integral Equation en_US
dc.subject Fuzzy Singular Integral Equation en_US
dc.subject Fuzzy Number en_US
dc.title Computation of semi-analytical solutions of fuzzy nonlinear integral equations tr_TR
dc.title Computation of Semi-Analytical Solutions of Fuzzy Nonlinear Integral Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: