Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Discrete fractional calculus for interval-valued systems

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

This study investigates linear fractional difference equations with respect to interval-valued functions. Caputo and Riemann-Liouville differences are defined. w-monotonicity is introduced and discrete Leibniz integral laws are provided. Then exact solutions of two linear equations are obtained by Picard's iteration. In comparison with the deterministic initial problems, the solutions are given in discrete Mittag-Leffler functions with and without delay, respectively. This paper provides a novel tool to understand fractional uncertainty problems on discrete time domains. (C) 2020 Elsevier B.V. All rights reserved.

Description

Wu, Guo-Cheng/0000-0002-1946-6770

Keywords

Fractional Difference Equations, Interval-Valued Functions, Discrete Fractional Calculus

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Huang, Lan-Lan...et al. (2021). "Discrete fractional calculus for interval-valued systems", Fuzzy Sets and Systems, Vol. 404, pp. 141-158.

WoS Q

Q1

Scopus Q

Q2

Source

Volume

404

Issue

Start Page

141

End Page

158