Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mild and strong solutions for a fractional nonlinear neumann boundary value problem

dc.authorid Herzallah, Mohamed/0000-0003-3514-3709
dc.authorid El-Shahed, Moustafa/0000-0001-9508-3192
dc.authorscopusid 6505909904
dc.authorscopusid 6701674037
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid El-Shahed, Moustafa/Jce-0393-2023
dc.contributor.author Herzallah, Mohamed A. E.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author El-Shahed, Moustafa
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-06-17T12:18:34Z
dc.date.available 2022-06-17T12:18:34Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Herzallah, Mohamed A. E.] Zagazig Univ, Fac Sci, Zagazig, Egypt; [Herzallah, Mohamed A. E.] Majmaah Univ, Coll Sci Zulfi, Al Majmaah, Saudi Arabia; [El-Shahed, Moustafa] Coll Educ, Qassim Unaizah, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania en_US
dc.description Herzallah, Mohamed/0000-0003-3514-3709; El-Shahed, Moustafa/0000-0001-9508-3192 en_US
dc.description.abstract In this paper, we investigated the following fractional Neumann boundary value problem D-C(0)alpha+u(t) - lambda u(t) = f (t, u(t)), u'(0) = u'(1) = 0, 1 < alpha < 2, lambda not equal 0, where D-C(a+)alpha is the fractional Caputo derivative. We proved the existence of at least one mild solution and we determined when this solution is unique for suitable assumptions on the function f en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Herzallah, Mohamed A. E.; El-Shahed, Moustafa; Baleanu, Dumitru (2013). "Mild and strong solutions for a fractional nonlinear neumann boundary value problem", Journal of Computational Analysis and Applications, Vol. 15, No. 2, pp. 341-352. en_US
dc.identifier.endpage 352 en_US
dc.identifier.issn 1521-1398
dc.identifier.issn 1572-9206
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-84876855698
dc.identifier.scopusquality Q4
dc.identifier.startpage 341 en_US
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000315700000015
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Eudoxus Press, Llc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Fractional Caputo Derivative en_US
dc.subject Boundary Value Problem en_US
dc.subject Neumann Conditions en_US
dc.subject Schauffer Fixed Point Theorem en_US
dc.title Mild and strong solutions for a fractional nonlinear neumann boundary value problem tr_TR
dc.title Mild and Strong Solutions for a Fractional Nonlinear Neumann Boundary Value Problem en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: