Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Using Anns Approach for Solving Fractional Order Volterra Integro-Differential Equations

dc.contributor.author Rostami, Fariba
dc.contributor.author Golmankhaneh, Alireza K.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jafarian, Ahmad
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2019-12-19T13:51:34Z
dc.date.accessioned 2025-09-18T14:10:45Z
dc.date.available 2019-12-19T13:51:34Z
dc.date.available 2025-09-18T14:10:45Z
dc.date.issued 2017
dc.description Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 en_US
dc.description.abstract Indeed, interesting properties of artificial neural networks approach made this non-parametric model a powerful tool in solving various complicated mathematical problems. The current research attempts to produce an approximate polynomial solution for special type of fractional order Volterra integrodifferential equations. The present technique combines the neural networks approach with the power series method to introduce an efficient iterative technique. To do this, a multi-layer feed-forward neural architecture is depicted for constructing a power series of arbitrary degree. Combining the initial conditions with the resulted series gives us a suitable trial solution. Substituting this solution instead of the unknown function and employing the least mean square rule, converts the origin problem to an approximated unconstrained optimization problem. Subsequently, the resulting nonlinear minimization problem is solved iteratively using the neural networks approach. For this aim, a suitable three-layer feed-forward neural architecture is formed and trained using a back-propagation supervised learning algorithm which is based on the gradient descent rule. In other words, discretizing the differential domain with a classical rule produces some training rules. By importing these to designed architecture as input signals, the indicated learning algorithm can minimize the defined criterion function to achieve the solution series coefficients. Ultimately, the analysis is accompanied by two numerical examples to illustrate the ability of the method. Also, some comparisons are made between the present iterative approach and another traditional technique. The obtained results reveal that our method is very effective, and in these examples leads to the better approximations. en_US
dc.description.publishedMonth 1
dc.identifier.citation Jafarian, Ahmad...et al. (2017). Using ANNs Approach for Solving Fractional Order Volterra Integro-differential Equations, International Journal Of Computational Intelligence Systems, 10(1), 470-480. en_US
dc.identifier.doi 10.2991/ijcis.2017.10.1.32
dc.identifier.issn 1875-6891
dc.identifier.issn 1875-6883
dc.identifier.scopus 2-s2.0-85018782599
dc.identifier.uri https://doi.org/10.2991/ijcis.2017.10.1.32
dc.identifier.uri https://hdl.handle.net/20.500.12416/13767
dc.language.iso en en_US
dc.publisher Springernature en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Equation en_US
dc.subject Power-Series Method en_US
dc.subject Artificial Neural Networks Approach en_US
dc.subject Criterion Function en_US
dc.subject Back-Propagation Learning Algorithm en_US
dc.title Using Anns Approach for Solving Fractional Order Volterra Integro-Differential Equations en_US
dc.title Using ANNs Approach for Solving Fractional Order Volterra Integro-differential Equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Khalili Golmankhaneh, Alireza/0000-0002-5008-0163
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 25031262700
gdc.author.scopusid 57194110847
gdc.author.scopusid 25122552100
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Khalili Golmankhaneh, Alireza/L-1554-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Jafarian, Ahmad; Rostami, Fariba] Islamic Azad Univ, Dept Math, Urmia Branch, Orumiyeh, Iran; [Golmankhaneh, Alireza K.] Islamic Azad Univ, Young Res & Elite Club, Urmia Branch, Orumiyeh, Iran; [Baleanu, Dumitru] Cankaya Uni, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-76900 Bucharest, Romania en_US
gdc.description.endpage 480 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 470 en_US
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W2566562249
gdc.identifier.wos WOS:000397302900032
gdc.openalex.fwci 1.25624878
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 17
gdc.plumx.crossrefcites 17
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.wos.citedcount 16
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files