Analysis of Riccati differential equations within a new fractional derivative without singular kernel
dc.authorid | Tajadodi, Haleh/0000-0001-8369-3698 | |
dc.authorid | Jafari, Hossein/0000-0001-6807-6675 | |
dc.authorscopusid | 26642881400 | |
dc.authorscopusid | 57193651918 | |
dc.authorscopusid | 55612315500 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Jafari, Hossein/E-9912-2016 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Tajadodi, Haleh/Aic-4185-2022 | |
dc.contributor.author | Jafari, Hossein | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Lia, Atena | |
dc.contributor.author | Tejadodi, Haleh | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-02-21T11:12:25Z | |
dc.date.available | 2020-02-21T11:12:25Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Jafari, Hossein; Lia, Atena] Univ Mazandaran, Dept Math, POB 47416-95447, Babol Sar, Iran; [Tejadodi, Haleh] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG 23, Magurele 76900, Romania; [Jafari, Hossein] Univ South Africa, Dept Math Sci, POB 392, ZA-0003 Unisa, South Africa | en_US |
dc.description | Tajadodi, Haleh/0000-0001-8369-3698; Jafari, Hossein/0000-0001-6807-6675 | en_US |
dc.description.abstract | Recently Caputo and Fabrizio suggested new definition of fractional derivative that the new kernel has no singularity. In this paper, an analytical method for solving Riccati differential equation with a new fractional derivative is reported. We present numerical results of solving the fractional Riccati differential equations by using the variational iteration method and its modification. The obtained results of two methods demonstrate the efficiency and simplicity of the MVIM that gives good approximations for a larger interval. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Jafari, Hossein; Lia, Atena; Tejadodi, Haleh; Baleanu, Dumitru, "Analysis of Riccati differential equations within a new fractional derivative without singular kernel", Fundamenta Informaticae, Vol. 151, No. 1-4, pp. 161-171, (2017). | en_US |
dc.identifier.doi | 10.3233/FI-2017-1485 | |
dc.identifier.endpage | 171 | en_US |
dc.identifier.issn | 0169-2968 | |
dc.identifier.issn | 1875-8681 | |
dc.identifier.issue | 1-4 | en_US |
dc.identifier.scopus | 2-s2.0-85015443587 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 161 | en_US |
dc.identifier.uri | https://doi.org/10.3233/FI-2017-1485 | |
dc.identifier.volume | 151 | en_US |
dc.identifier.wos | WOS:000398583500010 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Ios Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 13 | |
dc.subject | Caputo-Fabrizio Derivative | en_US |
dc.subject | Riccati Differential Equations | en_US |
dc.subject | Fractional Derivative | en_US |
dc.title | Analysis of Riccati differential equations within a new fractional derivative without singular kernel | tr_TR |
dc.title | Analysis of Riccati Differential Equations Within a New Fractional Derivative Without Singular Kernel | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: