Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analysis of Riccati differential equations within a new fractional derivative without singular kernel

dc.authorid Tajadodi, Haleh/0000-0001-8369-3698
dc.authorid Jafari, Hossein/0000-0001-6807-6675
dc.authorscopusid 26642881400
dc.authorscopusid 57193651918
dc.authorscopusid 55612315500
dc.authorscopusid 7005872966
dc.authorwosid Jafari, Hossein/E-9912-2016
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Tajadodi, Haleh/Aic-4185-2022
dc.contributor.author Jafari, Hossein
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Lia, Atena
dc.contributor.author Tejadodi, Haleh
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-02-21T11:12:25Z
dc.date.available 2020-02-21T11:12:25Z
dc.date.issued 2017
dc.department Çankaya University en_US
dc.department-temp [Jafari, Hossein; Lia, Atena] Univ Mazandaran, Dept Math, POB 47416-95447, Babol Sar, Iran; [Tejadodi, Haleh] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG 23, Magurele 76900, Romania; [Jafari, Hossein] Univ South Africa, Dept Math Sci, POB 392, ZA-0003 Unisa, South Africa en_US
dc.description Tajadodi, Haleh/0000-0001-8369-3698; Jafari, Hossein/0000-0001-6807-6675 en_US
dc.description.abstract Recently Caputo and Fabrizio suggested new definition of fractional derivative that the new kernel has no singularity. In this paper, an analytical method for solving Riccati differential equation with a new fractional derivative is reported. We present numerical results of solving the fractional Riccati differential equations by using the variational iteration method and its modification. The obtained results of two methods demonstrate the efficiency and simplicity of the MVIM that gives good approximations for a larger interval. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Jafari, Hossein; Lia, Atena; Tejadodi, Haleh; Baleanu, Dumitru, "Analysis of Riccati differential equations within a new fractional derivative without singular kernel", Fundamenta Informaticae, Vol. 151, No. 1-4, pp. 161-171, (2017). en_US
dc.identifier.doi 10.3233/FI-2017-1485
dc.identifier.endpage 171 en_US
dc.identifier.issn 0169-2968
dc.identifier.issn 1875-8681
dc.identifier.issue 1-4 en_US
dc.identifier.scopus 2-s2.0-85015443587
dc.identifier.scopusquality Q3
dc.identifier.startpage 161 en_US
dc.identifier.uri https://doi.org/10.3233/FI-2017-1485
dc.identifier.volume 151 en_US
dc.identifier.wos WOS:000398583500010
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Ios Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 13
dc.subject Caputo-Fabrizio Derivative en_US
dc.subject Riccati Differential Equations en_US
dc.subject Fractional Derivative en_US
dc.title Analysis of Riccati differential equations within a new fractional derivative without singular kernel tr_TR
dc.title Analysis of Riccati Differential Equations Within a New Fractional Derivative Without Singular Kernel en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: