Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation

dc.authorid Salahshour, Soheil/0000-0003-1390-3551
dc.authorid Hosseini, Kamyar/0000-0001-7137-1456
dc.authorid Sadri Khatouni, Khadijeh/0000-0001-6083-9527
dc.authorscopusid 56685323200
dc.authorscopusid 36903183800
dc.authorscopusid 26635282900
dc.authorscopusid 7005872966
dc.authorscopusid 23028598900
dc.authorwosid Sadri, Khadijeh/Jwa-5374-2024
dc.authorwosid Hosseini, Kamyar/J-7345-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Sadri, Khadijeh
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Hincal, Evren
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Salahshour, Soheil
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-11-23T08:06:18Z
dc.date.available 2023-11-23T08:06:18Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Sadri, Khadijeh; Hosseini, Kamyar; Hincal, Evren; Salahshour, Soheil] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40447, Taiwan; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Salahshour, Soheil/0000-0003-1390-3551; Hosseini, Kamyar/0000-0001-7137-1456; Sadri Khatouni, Khadijeh/0000-0001-6083-9527 en_US
dc.description.abstract The idea of this work is to provide a pseudo-operational collocation scheme to deal with the solution of the variable-order time-space fractional KdV-Burgers-Kuramoto equation (VOSTFKBKE). Such the fractional partial differential equation (FPDE) has three characteristics of dissipation, dispersion, and instability, which make this equation is used to model many phenomena in diverse fields of physics. Numerical solutions are sought in a linear combination of two-dimensional Jacobi polynomials as basis functions. In order to approximate unknown functions in terms of the basis vector, pseudo-operational matrices are constructed to avoid integration. An error bound of the residual function is estimated in a Jacobi-weighted space in the L2$$ {L}<^>2 $$ norms. Numerical results are compared with exact ones and those reported by other researchers to demonstrate the effectiveness of the recommended method. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Sadri, Khadijeh...et.al. (2023). "A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation", Mathematical Methods In The Applied Sciences, Vol.46, No.8, pp.8759-8778. en_US
dc.identifier.doi 10.1002/mma.9015
dc.identifier.endpage 8778 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85145735768
dc.identifier.scopusquality Q1
dc.identifier.startpage 8759 en_US
dc.identifier.uri https://doi.org/10.1002/mma.9015
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:000908061300001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 21
dc.subject Bivariate Jacobi Polynomials en_US
dc.subject Error Bound en_US
dc.subject Fractional Kdv-Burgers-Kuramoto Equation en_US
dc.subject Fractional Operators With Variable Orders en_US
dc.subject Pseudo-Operational Matrix en_US
dc.title A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation tr_TR
dc.title A Pseudo-Operational Collocation Method for Variable-Order Time-Space Fractional Kdv-Burgers Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 18
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: