A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorid | Hosseini, Kamyar/0000-0001-7137-1456 | |
dc.authorid | Sadri Khatouni, Khadijeh/0000-0001-6083-9527 | |
dc.authorscopusid | 56685323200 | |
dc.authorscopusid | 36903183800 | |
dc.authorscopusid | 26635282900 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 23028598900 | |
dc.authorwosid | Sadri, Khadijeh/Jwa-5374-2024 | |
dc.authorwosid | Hosseini, Kamyar/J-7345-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Sadri, Khadijeh | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Hosseini, Kamyar | |
dc.contributor.author | Hincal, Evren | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2023-11-23T08:06:18Z | |
dc.date.available | 2023-11-23T08:06:18Z | |
dc.date.issued | 2023 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Sadri, Khadijeh; Hosseini, Kamyar; Hincal, Evren; Salahshour, Soheil] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40447, Taiwan; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description | Salahshour, Soheil/0000-0003-1390-3551; Hosseini, Kamyar/0000-0001-7137-1456; Sadri Khatouni, Khadijeh/0000-0001-6083-9527 | en_US |
dc.description.abstract | The idea of this work is to provide a pseudo-operational collocation scheme to deal with the solution of the variable-order time-space fractional KdV-Burgers-Kuramoto equation (VOSTFKBKE). Such the fractional partial differential equation (FPDE) has three characteristics of dissipation, dispersion, and instability, which make this equation is used to model many phenomena in diverse fields of physics. Numerical solutions are sought in a linear combination of two-dimensional Jacobi polynomials as basis functions. In order to approximate unknown functions in terms of the basis vector, pseudo-operational matrices are constructed to avoid integration. An error bound of the residual function is estimated in a Jacobi-weighted space in the L2$$ {L}<^>2 $$ norms. Numerical results are compared with exact ones and those reported by other researchers to demonstrate the effectiveness of the recommended method. | en_US |
dc.description.publishedMonth | 5 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Sadri, Khadijeh...et.al. (2023). "A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation", Mathematical Methods In The Applied Sciences, Vol.46, No.8, pp.8759-8778. | en_US |
dc.identifier.doi | 10.1002/mma.9015 | |
dc.identifier.endpage | 8778 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopus | 2-s2.0-85145735768 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 8759 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.9015 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:000908061300001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 21 | |
dc.subject | Bivariate Jacobi Polynomials | en_US |
dc.subject | Error Bound | en_US |
dc.subject | Fractional Kdv-Burgers-Kuramoto Equation | en_US |
dc.subject | Fractional Operators With Variable Orders | en_US |
dc.subject | Pseudo-Operational Matrix | en_US |
dc.title | A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation | tr_TR |
dc.title | A Pseudo-Operational Collocation Method for Variable-Order Time-Space Fractional Kdv-Burgers Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 18 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: