Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Fractional Model of Spring Pendulum: New Features Within Different Kernels

dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorscopusid 7005872966
dc.authorscopusid 8898843900
dc.authorscopusid 34880044900
dc.authorwosid Jajarmi, Amin/O-7701-2019
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Asad, Jihad H.
dc.contributor.author Jajarmi, Amin
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-03-27T07:26:34Z
dc.date.available 2020-03-27T07:26:34Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, Bucharest 76900, Romania; [Asad, Jihad H.] Palestine Tech Univ, Dept Phys, Coll Arts & Sci, POB 7, Tulkarm, Palestine; [Jajarmi, Amin] Univ Bojnord, Dept Elect Engn, POB 94531-1339, Bojnord, Iran en_US
dc.description Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract In this work, new aspects of the fractional calculus (FC) are examined for a model of spring pendulum in fractional sense. First, we obtain the classical Lagrangian of the model, and as a result, we derive the classical Euler-Lagrange equations of the motion. Second, we generalize the classical Lagrangian to fractional case and derive the fractional Euler-Lagrange equations in terms of fractional derivatives with singular and nonsingular kernels, respectively. Finally, we provide the numerical solution of these equations within two fractional operators for some fractional orders and initial conditions. Numerical simulations verify that taking into account the recently features of the FC provides more realistic models demonstrating hidden aspects of the real-world phenomena. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Asad, Jihad H.; Jajarmi, Amin, "The Fractional Model of Spring Pendulum: New Features Within Different Kernels", Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, Vol. 19, No. 3, pp. 447-454, (2018) en_US
dc.identifier.endpage 454 en_US
dc.identifier.issn 1454-9069
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85052645520
dc.identifier.scopusquality Q4
dc.identifier.startpage 447 en_US
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:000444795200005
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 68
dc.subject Spring Pendulum en_US
dc.subject Euler-Lagrange Equation en_US
dc.subject Fractional Derivative en_US
dc.subject Nonsingular Kernel en_US
dc.title The Fractional Model of Spring Pendulum: New Features Within Different Kernels tr_TR
dc.title The Fractional Model of Spring Pendulum: New Features Within Different Kernels en_US
dc.type Article en_US
dc.wos.citedbyCount 65
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: