Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Convolutional Neural Network-Based Deep Learning for Landslide Susceptibility Mapping in the Bakhtegan Watershed

dc.contributor.author Feng, Li
dc.contributor.author Zhang, Maosheng
dc.contributor.author Mao, Yimin
dc.contributor.author Liu, Hao
dc.contributor.author Yang, Chuanbo
dc.contributor.author Dong, Ying
dc.contributor.author Nanehkaran, Yaser A.
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-06-05T21:56:35Z
dc.date.available 2025-06-05T21:56:35Z
dc.date.issued 2025
dc.description.abstract Landslides pose a significant threat to infrastructure, ecosystems, and human safety, necessitating accurate and efficient susceptibility assessment methods. Traditional models often struggle to capture the complex spatial dependencies and interactions between geological and environmental factors. To address this gap, this study employs a deep learning approach, utilizing a convolutional neural network (CNN) for high-precision landslide susceptibility mapping in the Bakhtegan watershed, southwestern Iran. A comprehensive landslide inventory was compiled using 235 documented landslide locations, validated through remote sensing and field surveys. An equal number of non-landslide locations were systematically selected to ensure balanced model training. Fifteen key conditioning factors-including topographical, geological, hydrological, and climatological variables-were incorporated into the model. While traditional statistical methods often fail to extract spatial hierarchies, the CNN model effectively processes multi-dimensional geospatial data, learning intricate patterns influencing slope instability. The CNN model outperformed other classification approaches, achieving an accuracy of 95.76% and a precision of 95.11%. Additionally, error metrics confirmed its reliability, with a mean absolute error (MAE) of 0.11864, mean squared error (MSE) of 0.18796, and root mean squared error (RMSE) of 0.18632. The results indicate that the northern and northeastern regions of the Bakhtegan watershed are highly susceptible to landslides, highlighting areas where proactive mitigation strategies are crucial. This study demonstrates that deep learning, particularly CNNs, offers a powerful and scalable solution for landslide susceptibility assessment. The findings provide valuable insights for urban planners, engineers, and policymakers to implement effective risk reduction strategies and enhance resilience in landslide-prone regions. en_US
dc.description.sponsorship National Natural Science Foundation of China en_US
dc.description.sponsorship We would like to thank The University of California Davis and Yancheng Teachers University and an anonymous reviewer for their helpful suggestions and corrections, which considerably improved the manuscript. en_US
dc.identifier.doi 10.1038/s41598-025-96748-3
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-105003160108
dc.identifier.uri https://doi.org/10.1038/s41598-025-96748-3
dc.identifier.uri https://hdl.handle.net/20.500.12416/10135
dc.language.iso en en_US
dc.publisher Nature Portfolio en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Landslide Susceptibility Mapping en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Network (Cnn) en_US
dc.subject Remote Sensing en_US
dc.subject Bakhtegan Watershed en_US
dc.title Convolutional Neural Network-Based Deep Learning for Landslide Susceptibility Mapping in the Bakhtegan Watershed en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 55240363000
gdc.author.scopusid 55240363000
gdc.author.scopusid 55240363000
gdc.author.scopusid 55240363000
gdc.author.scopusid 55240363000
gdc.author.scopusid 55240363000
gdc.author.scopusid 55240363000
gdc.author.wosid Nanehkaran, Yaser/Aan-6150-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Feng, Li; Zhang, Maosheng; Liu, Hao; Yang, Chuanbo] XianJiaotong Univ, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China; [Mao, Yimin] Shaoguan Univ, Sch Informat & Engn, Shaoguan 512005, Guangdong, Peoples R China; [Liu, Hao] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA; [Dong, Ying] Minist Nat Resources, XiAn Ctr China Geol Survey, Key Lab Geohazard Loess Area, Xian 710054, Peoples R China; [Nanehkaran, Yaser A.] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Jiangsu, Peoples R China; [Nanehkaran, Yaser A.] Cankaya Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-06790 Ankara, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4409519008
gdc.identifier.pmid 40246900
gdc.identifier.wos WOS:001470272500017
gdc.openalex.fwci 19.17859362
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 29
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files