Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Solitary Wave Solution for a Generalized Hirota-Satsuma Coupled Kdv and Mkdv Equations: a Semi-Analytical Approach

dc.contributor.author Chakraverty, S.
dc.contributor.author Baleanu, D.
dc.contributor.author Jena, R.M.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-01-04T08:29:31Z
dc.date.accessioned 2025-09-18T16:07:13Z
dc.date.available 2023-01-04T08:29:31Z
dc.date.available 2025-09-18T16:07:13Z
dc.date.issued 2020
dc.description.abstract Nonlinear fractional differential equations (NFDEs) offer an effective model of numerous phenomena in applied sciences such as ocean engineering, fluid mechanics, quantum mechanics, plasma physics, nonlinear optics. Some studies in control theory, biology, economy, and electrodynamics, etc. demonstrate that NFDEs play the primary role in explaining various phenomena arising in real-life. Now-a-day NFDEs in various scientific fields in particular optical fibers, chemical physics, solid-state physics, and so forth have the most important subjects for study. Finding exact responses to these equations will help us to a better understanding of our environmental nonlinear physical phenomena. In this regard, in the present study, we have applied fractional reduced differential transform method (FRDTM) to obtain the solution of nonlinear time-fractional Hirota-Satsuma coupled KdV and MKdV equations. The novelty of the FRDTM is that it does not require any discretization, transformation, perturbation, or any restrictive conditions. Moreover, this method requires less computation compared to other methods. Computed results are compared with the existing results for the special cases of integer order. The present results are in good agreement with the existing solutions. Here, the fractional derivatives are considered in the Caputo sense. The presented method is a semi-analytical method based on the generalized Taylor series expansion and yields an analytical solution in the form of a polynomial. © 2020 Faculty of Engineering, Alexandria University en_US
dc.description.publishedMonth 10
dc.description.sponsorship Department of Science and Technology, Government of Kerala, (IF170207) en_US
dc.identifier.citation Jena, Rajarama Mohan; Chakraverty, Snehashish; Baleanu, Dumitru (2020). "Solitary wave solution for a generalized Hirota-Satsuma coupled KdV and MKdV equations: A semi-analytical approach", Alexandria Engineering Journal, Vol. 59, No. 5, pp. 2877-2889. en_US
dc.identifier.doi 10.1016/j.aej.2020.01.002
dc.identifier.issn 1110-0168
dc.identifier.scopus 2-s2.0-85078332541
dc.identifier.uri https://doi.org/10.1016/j.aej.2020.01.002
dc.identifier.uri https://hdl.handle.net/20.500.12416/14702
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartof Alexandria Engineering Journal en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo Derivative en_US
dc.subject Coupled Mkdv Equation en_US
dc.subject Frdtm en_US
dc.subject Hirota-Satsuma Coupled Kdv System en_US
dc.subject Nonlinear Equation en_US
dc.subject Solitons Solution en_US
dc.title Solitary Wave Solution for a Generalized Hirota-Satsuma Coupled Kdv and Mkdv Equations: a Semi-Analytical Approach en_US
dc.title Solitary wave solution for a generalized Hirota-Satsuma coupled KdV and MKdV equations: A semi-analytical approach tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57207742143
gdc.author.scopusid 7005011457
gdc.author.scopusid 7005872966
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Jena R.M., Department of Mathematics, National Institute of Technology Rourkela, 769008, India; Chakraverty S., Department of Mathematics, National Institute of Technology Rourkela, 769008, India; Baleanu D., Department of Mathematics, Faculty of Art and Sciences, Cankaya University Balgat, Ankara, 06530, Turkey, Institute of Space Sciences, Magurele-Bucharest, 077125, Romania, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40447, Taiwan en_US
gdc.description.endpage 2889 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 2877 en_US
gdc.description.volume 59 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3002202470
gdc.openalex.fwci 2.45034864
gdc.openalex.normalizedpercentile 0.9
gdc.opencitations.count 22
gdc.plumx.crossrefcites 23
gdc.plumx.facebookshareslikecount 132
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 22
gdc.scopus.citedcount 22
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files