Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Exploring the Potential of Artificial Intelligence Tools in Enhancing the Performance of an Inline Pipe Turbine

dc.contributor.author Celebioglu, Kutay
dc.contributor.author Ayli, Ece
dc.contributor.author Cetinturk, Huseyin
dc.contributor.author Tascioglu, Yigit
dc.contributor.author Aradag, Selin
dc.contributor.authorID 265836 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-30T13:07:06Z
dc.date.accessioned 2025-09-18T12:06:25Z
dc.date.available 2024-05-30T13:07:06Z
dc.date.available 2025-09-18T12:06:25Z
dc.date.issued 2024
dc.description.abstract In this study, investigations were conducted using computational fluid dynamics (CFD) to assess the applicability of a Francis-type water turbine within a pipe. The objective of the study is to determine the feasibility of implementing a turbine within a pipe and enhance its performance values within the operating range. The turbine within the pipe occupies significantly less space in hydroelectric power plants since a spiral casing is not used to distribute the flow to stationary vanes. Consequently, production and assembly costs can be reduced. Hence, there is a broad scope for application, particularly in small and medium-scale hydroelectric power plants. According to the results, the efficiency value increases on average by approximately 1.5% compared to conventional design, and it operates with higher efficiencies over a wider flow rate range. In the second part of the study, machine learning was employed for the efficiency prediction of an inline-type turbine. An appropriate Artificial Neural Network (ANN) architecture was initially obtained, with the Bayesian Regularization training algorithm proving to be the best approach for this type of problem. When the suitable ANN architecture was utilized, the prediction was found to be in good agreement with CFD, with an root mean squared error value of 0.194. An R2 value of 0.99631 was achieved with the appropriate ANN architecture. en_US
dc.description.sponsorship Turkish Ministry of Development en_US
dc.description.sponsorship The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Turkish Ministry of Development. en_US
dc.identifier.citation Çelebioğlu, Kutay...et al. "Exploring the potential of artificial intelligence tools in enhancing the performance of an inline pipe turbine", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. en_US
dc.identifier.doi 10.1177/09544089231224324
dc.identifier.issn 0954-4089
dc.identifier.issn 2041-3009
dc.identifier.scopus 2-s2.0-85182199612
dc.identifier.uri https://doi.org/10.1177/09544089231224324
dc.identifier.uri https://hdl.handle.net/123456789/10898
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Francis Turbine en_US
dc.subject Inline Turbine en_US
dc.subject Cfd en_US
dc.subject Efficiency en_US
dc.subject Hill Chart en_US
dc.title Exploring the Potential of Artificial Intelligence Tools in Enhancing the Performance of an Inline Pipe Turbine en_US
dc.title Exploring the potential of artificial intelligence tools in enhancing the performance of an inline pipe turbine tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 37661052300
gdc.author.scopusid 55371892800
gdc.author.scopusid 56444345000
gdc.author.scopusid 16231633500
gdc.author.scopusid 11440423900
gdc.author.wosid Tascioglu, Yigit/Lzg-2351-2025
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Celebioglu, Kutay; Cetinturk, Huseyin] TOBB Univ Econ & Technol, Hydro Energy Res Lab ETU Hydro, Ankara, Turkiye; [Ayli, Ece] Cankaya Univ, Dept Mech Engn, TR-06530 Ankara, Turkiye; [Tascioglu, Yigit; Aradag, Selin] TED Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4390805636
gdc.identifier.wos WOS:001141929100001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.01
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 2
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files