Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Voronoi Boundary Visibility for Efficient Path Planning

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The subject of this paper is the computation of paths for mobile robots that navigate from a start position to a goal position in environments with static obstacles. Specifically, we focus on paths that are represented by straight lines. Such paths can for example directly be followed by omni-directional robots or can be used as an initial solution for path smoothing. In this context, the most common performance metrics are the path length, the obstacle clearance and the computation time. In this paper, we develop a new path planning algorithm that addresses all the stated performance metrics. Our method first determines all possible connections between the start position and goal position along the edges of the generalized Voronoi diagram (GVD) of a given obstacle map. The shortest connections are then refined using a balanced method for creating shortcuts along existing waypoints and introducing new waypoints in order to cut corners. As an important feature, our method reduces the number of required waypoints by iteratively adding new waypoints and then removing unnecessary waypoints along solution paths. Moreover, our method takes into account multiple start-goal connections, since the shortest start-goal connection along the edges of the GVD might not lead to the shortest solution path. A comprehensive computational evaluation for a large number of maps with different properties shows that the proposed method outperforms sampling-based algorithms such as Probabilistic Roadmaps (PRM) and exact methods such as Visibility Graphs (VG) by computing close-to-optimal solution paths with a specified minimum obstacle clearance in less time.

Description

Schmidt, Klaus/0000-0003-3840-2737; Al-Dahhan, Mohammed Rabeea Hashim/0000-0003-1376-6825; Schmidt, Ece Guran/0000-0002-4062-389X

Keywords

Path Planning, Mobile Robots, Measurement, Safety, Navigation, Shape, Obstacles, Voronoi Diagram

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Al-Dahhan, Mohammed Rabeea Hashim; Schmidt, Klaus Werner (2020). "Voronoi Boundary Visibility for Efficient Path Planning", IEEE Access, Vol. 8, pp. 134764-134781.

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
16

Source

Volume

8

Issue

Start Page

134764

End Page

134781
PlumX Metrics
Citations

CrossRef : 3

Scopus : 23

Captures

Mendeley Readers : 17

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.1546405

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo