Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Damage Detection in Aircraft Engine Borescope Inspection Using Deep Learning

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media Deutschland GmbH

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Aircraft engine inspection is a key pillar of aviation safety as it helps to maintain adequate performance standards to ensure engine airworthiness. In addition, it is also vital for asset value retention. Borescope inspection is currently the most widely used visual inspection method for aircraft engines. However, borescope inspection is a time-consuming, subjective, and complex process that heavily depends on the experience and attention level of the inspector. Moreover, the cost savings of airlines and the maintenance, repair, and overhaul (MRO) centers expose pressure and workload on inspectors. These factors make an automated system to support damage detection during borescope inspection necessary in order to mitigate potential risks. In this paper, we propose a deep learning-based automated damage detection framework that employs aircraft engine borescope inspection images. Faster R-CNN-based deep learning model with Inception v2 feature extractor is utilized for the present architecture. Due to the limited number of images, data augmentation and other overfitting methods are also employed. The framework supports crack, burn, nick, and dent damage types across all modules of turbofan engines. It is trained and validated with moderate to complex borescope images obtained from the field. The framework achieves 92.64% accuracy for crack, 92.05% for nick or dent, and 81.14% for burn damage classes, with an overall 88.61% average accuracy. © The Author(s) 2025.

Description

Keywords

Aircraft Engine, Borescope Inspection, Damage Detection, Deep Learning, Defect Detection

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Neural Computing and Applications

Volume

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 5

Page Views

3

checked on Nov 24, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data is not available