Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function

dc.authorid Zahida, Dr Zahida Perveen/0009-0002-6040-5619
dc.authorid Rahman, Gauhar/0000-0002-2728-7537
dc.authorscopusid 7005872966
dc.authorscopusid 55312134600
dc.authorscopusid 7801694610
dc.authorscopusid 58925595700
dc.authorscopusid 56715663200
dc.authorscopusid 56167532300
dc.authorwosid Samraiz, Muhammad/K-8181-2019
dc.authorwosid Rahman, Dr. Gauhar/Abb-2899-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Nisar, Kottakkaran/F-7559-2015
dc.authorwosid Zahida, Dr Zahida Perveen/Kzu-0232-2024
dc.authorwosid Rahman, Gauhar/Aap-7213-2021
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Samraiz, Muhammad
dc.contributor.author Perveen, Zahida
dc.contributor.author Iqbal, Sajid
dc.contributor.author Nisar, Kottakkaran Sooppy
dc.contributor.author Rahman, Gauhar
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-05-16T13:11:34Z
dc.date.available 2022-05-16T13:11:34Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40250, Taiwan; [Samraiz, Muhammad; Perveen, Zahida] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan; [Iqbal, Sajid] Riphah Int Univ, Dept Math, Faisalabad Campus,Satyana Rd, Faisalabad 38000, Pakistan; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia; [Rahman, Gauhar] Hazara Univ Mansehra, Dept Math & Stat 5, Dhodial, Pakistan en_US
dc.description Zahida, Dr Zahida Perveen/0009-0002-6040-5619; Rahman, Gauhar/0000-0002-2728-7537 en_US
dc.description.abstract In this paper, we at first develop a generalized integral identity by associating RiemannLiouville (RL) fractional integral of a function concerning another function. By using this identity estimates for various convexities are accomplish which are fractional integral inequalities. From our results, we obtained bounds of known fractional results which are discussed in detail. As applications of the derived results, we obtain the mid-point-type inequalities. These outcomes might be helpful in the investigation of the uniqueness of partial differential equations and fractional boundary value problems. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru...et al. (2021). "Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function", AIMS Mathematics, Vol. 6, No. 5, pp. 4280-4295. en_US
dc.identifier.doi 10.3934/math.2021253
dc.identifier.endpage 4295 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85100514117
dc.identifier.scopusquality Q1
dc.identifier.startpage 4280 en_US
dc.identifier.uri https://doi.org/10.3934/math.2021253
dc.identifier.volume 6 en_US
dc.identifier.wos WOS:000672546600002
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 13
dc.subject Hermite-Hadamard-Fejer Inequalities en_US
dc.subject Convex Function en_US
dc.subject Generalized Fractional Integral en_US
dc.subject Mid-Point Inequality en_US
dc.subject Riemann-Liouville en_US
dc.title Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function tr_TR
dc.title Hermite-Hadamard Type Inequalities Via Fractional Integral of a Function Concerning Another Function en_US
dc.type Article en_US
dc.wos.citedbyCount 13
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
243.55 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: