Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Large-scale hyperspectral image compression via sparse representations based on online learning

dc.contributor.authorÜlkü, İrem
dc.contributor.authorKizgut, Ersin
dc.contributor.authorID17575tr_TR
dc.date.accessioned2018-09-12T13:15:57Z
dc.date.available2018-09-12T13:15:57Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractIn this study, proximity based optimization algorithms are used for lossy compression of hyperspectral images that are inherently large scale. This is the first time that such proximity based optimization algorithms are implemented with an online dictionary learning method. Compression performances are compared with the one obtained by various sparse representation algorithms. As a result, proximity based optimization algorithms are listed among the three best ones in terms of compression performance values for all hyperspectral images. Additionally, the applicability of anomaly detection is tested on the reconstructed images.en_US
dc.description.publishedMonth3
dc.identifier.citationÜlkü, İ., Kizgut, E. (2018). Large-scale hyperspectral image compression via sparse representations based on online learning. International Journal Of Applied Mathematics And Computer Science, 28(1), 197-207. http://dx.doi.org/10.2478/amcs-2018-0015en_US
dc.identifier.doi10.2478/amcs-2018-0015
dc.identifier.endpage207en_US
dc.identifier.issn1641-876X
dc.identifier.issue1en_US
dc.identifier.startpage197en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1716
dc.identifier.volume28en_US
dc.language.isoenen_US
dc.publisherUniv Zielona Gora Pressen_US
dc.relation.ispartofInternational Journal Of Applied Mathematics And Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHyperspectral Imagingen_US
dc.subjectCompression Algorithmsen_US
dc.subjectDictionary Learningen_US
dc.subjectSparse Codingen_US
dc.titleLarge-scale hyperspectral image compression via sparse representations based on online learningtr_TR
dc.titleLarge-Scale Hyperspectral Image Compression Via Sparse Representations Based on Online Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ülkü, İrem.pdf
Size:
546.23 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: