Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Analytical Solutions of Heat Transfer Flow of Clay-Water Base Nanoparticles With the Application of Novel Hybrid Fractional Derivative

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Vinca inst Nuclear Sci

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Clay nanoparticles are hanging in three different based fluids (water, kerosene, and engine oil). The exact terminologies of Maxwell-Garnett and Brinkman for the current thermophysical properties of clay nanofluids are used, while the flow occurrence is directed by a set linear PDE with physical initial and boundary conditions. The classical governing equations are extended to non-integer order hybrid fractional derivative which is introduced in [33]. Analytical solutions for temperature and velocity fields are attained via Laplace transform technique. Some limiting solutions are also obtained from the existing literature and compared for different values of fractional parameter. To vision the impact of several flow parameters on the temperature and velocity some graphs are drawn using Mathcad software and designed in different figures. As a result, we found that hybrid fractional model is better in describing the decay behavior of temperature and velocity in comparison of classical derivatives. In comparison of nanofluid with different base fluids, it is concluded that water-based nanofluid has higher velocity than others.

Description

Asjad, Muhammad Imran/0000-0002-1484-5114

Keywords

Hybrid Fractional Derivative, Power Law Kernel, Clay-Nanoparticles, Analytical Solutions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

ASJAD, Muhammad Imran...et al. (2020). "NEW ANALYTICAL SOLUTIONS OF HEAT TRANSFER FLOW OF CLAY-WATER BASE NANOPARTICLES WITH THE APPLICATION OF NOVEL HYBRID FRACTIONAL DERIVATIVE", Thermal Science, Vol. 24, No. 1, pp. S343-S350.

WoS Q

Q4

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
19

Source

Volume

24

Issue

Start Page

S343

End Page

S350
PlumX Metrics
Citations

CrossRef : 15

Scopus : 22

Captures

Mendeley Readers : 6

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.97311354

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo