Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Dynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?

dc.authoridCifdaloz, Oguzhan/0000-0003-0523-946X
dc.authoridAkagunduz, Erdem/0000-0002-0792-7306
dc.authorscopusid8331988500
dc.authorscopusid6508048390
dc.authorwosidCifdaloz, Oguzhan/Aai-3186-2021
dc.authorwosidCifdaloz, Oguzhan/F-5301-2018
dc.authorwosidAkagunduz, Erdem/W-1788-2018
dc.contributor.authorAkagunduz, Erdem
dc.contributor.authorCifdaloz, Oguzhan
dc.contributor.authorID279762tr_TR
dc.date.accessioned2023-02-15T11:13:35Z
dc.date.available2023-02-15T11:13:35Z
dc.date.issued2021
dc.departmentÇankaya Universityen_US
dc.department-temp[Akagunduz, Erdem] Middle East Tech Univ METU, Grad Sch Informat, Ankara, Turkey; [Cifdaloz, Oguzhan] Cankaya Univ, Dept Elect & Elect Engn, Ankara, Turkeyen_US
dc.descriptionCifdaloz, Oguzhan/0000-0003-0523-946X; Akagunduz, Erdem/0000-0002-0792-7306en_US
dc.description.abstractIn this paper, we investigate the parameter identification problem in dynamical systems through a deep learning approach. Focusing mainly on second-order, linear time-invariant dynamical systems, the topic of damping factor identification is studied. By utilizing a six-layer deep neural network with different recurrent cells, namely GRUs, LSTMs or BiLSTMs; and by feeding input/output sequence pairs captured from a dynamical system simulator, we search for an effective deep recurrent architecture in order to resolve the damping factor identification problem. Our study's results show that, although previously not utilized for this task in the literature, bidirectional gated recurrent cells (BiLSTMs) provide better parameter identification results when compared to unidirectional gated recurrent memory cells such as GRUs and LSTM. Thus, indicating that an input/output sequence pair of finite length, collected from a dynamical system and when observed anachronistically, may carry information in both time directions to predict a dynamical systems parameter.en_US
dc.description.publishedMonth12
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationAkagündüz, Erdem; Çifdalöz, Oğuzhan (2021). "Dynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?", Neural Computing and Applications, Vol. 33, No. 23, pp. 16745-16757.en_US
dc.identifier.doi10.1007/s00521-021-06271-5
dc.identifier.endpage16757en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.issue23en_US
dc.identifier.scopus2-s2.0-85110437514
dc.identifier.scopusqualityQ1
dc.identifier.startpage16745en_US
dc.identifier.urihttps://doi.org/10.1007/s00521-021-06271-5
dc.identifier.volume33en_US
dc.identifier.wosWOS:000671629100001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subjectDynamical Systems Parameter Identificationen_US
dc.subjectRecurrent Cellsen_US
dc.subjectLstmen_US
dc.subjectGruen_US
dc.subjectBilstmen_US
dc.titleDynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?tr_TR
dc.titleDynamical System Parameter Identification Using Deep Recurrent Cell Networks Which Gated Recurrent Unit and Whenen_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: