Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Dynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?

dc.contributor.authorAkagündüz, Erdem
dc.contributor.authorÇifdalöz, Oğuzhan
dc.contributor.authorID279762tr_TR
dc.date.accessioned2023-02-15T11:13:35Z
dc.date.available2023-02-15T11:13:35Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractIn this paper, we investigate the parameter identification problem in dynamical systems through a deep learning approach. Focusing mainly on second-order, linear time-invariant dynamical systems, the topic of damping factor identification is studied. By utilizing a six-layer deep neural network with different recurrent cells, namely GRUs, LSTMs or BiLSTMs; and by feeding input/output sequence pairs captured from a dynamical system simulator, we search for an effective deep recurrent architecture in order to resolve the damping factor identification problem. Our study’s results show that, although previously not utilized for this task in the literature, bidirectional gated recurrent cells (BiLSTMs) provide better parameter identification results when compared to unidirectional gated recurrent memory cells such as GRUs and LSTM. Thus, indicating that an input/output sequence pair of finite length, collected from a dynamical system and when observed anachronistically, may carry information in both time directions to predict a dynamical systems parameter.en_US
dc.description.publishedMonth12
dc.identifier.citationAkagündüz, Erdem; Çifdalöz, Oğuzhan (2021). "Dynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?", Neural Computing and Applications, Vol. 33, No. 23, pp. 16745-16757.en_US
dc.identifier.doi10.1007/s00521-021-06271-5
dc.identifier.endpage16757en_US
dc.identifier.issn0941-0643
dc.identifier.issue23en_US
dc.identifier.startpage16745en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/6246
dc.identifier.volume33en_US
dc.language.isoenen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiLSTMen_US
dc.subjectDynamical Systems Parameter Identificationen_US
dc.subjectGRUen_US
dc.subjectLSTMen_US
dc.subjectRecurrent Cellsen_US
dc.titleDynamical system parameter identification using deep recurrent cell networks: Which gated recurrent unit and when?tr_TR
dc.titleDynamical System Parameter Identification Using Deep Recurrent Cell Networks: Which Gated Recurrent Unit and When?en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: