Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Convective Effect on Magnetohydrodynamic (MHD) Stagnation Point Flow of Casson Fluid over a Vertical Exponentially Stretching/Shrinking Surface: Triple Solutions

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In the current study, the characteristics of heat transfer of a steady, two-dimensional, stagnation point, and magnetohydrodynamic (MHD) flow of shear thickening Casson fluid on an exponentially vertical shrinking/stretching surface are examined in attendance of convective boundary conditions. The impact of the suction parameter is also considered. The system of governing partial differential equations (PDEs) and boundary conditions is converted into ordinary differential equations (ODEs) with the suitable exponential similarity variables of transformations and then solved using the shooting method with the fourth order Runge-Kutta method. Similarity transformation is an important class of phenomena in which scale symmetry allows one to reduce the number of independent variables of the problem. It should be noted that solutions of the ODEs show the symmetrical behavior of the PDES for the profiles of velocity and temperature. Similarity solutions are obtained for the case of stretching/shrinking and suction parameters. It is revealed that there exist two ranges of the solutions in the specific ranges of the physical parameters, three solutions depend on the opposing flow case where stagnation point (A) should be equal to 0.1, two solutions exist when lambda(1)= 0where lambda(1)is a mixed convection parameter andA > 0.1, and a single solution exists when lambda(1)> 0. Moreover, the effects of numerous applied parameters on velocity, temperature distributions, skin friction, and local Nusselt number are examined and given through tables and graphs for both shrinking and stretching surfaces.

Description

Keywords

Convective Condition, Triple Solutions, Stagnation Flow, Casson Fluid, Stability Analysis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Lund, Liaquat Alia...et al. (2020). "Convective Effect on Magnetohydrodynamic (MHD) Stagnation Point Flow of Casson Fluid over a Vertical Exponentially Stretching/Shrinking Surface: Triple Solutions", Symmetry-Basel, Vol. 12, No. 8.

WoS Q

Scopus Q

Source

Symmetry-Basel

Volume

12

Issue

8

Start Page

End Page