Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Ensembling Brain Regions for Brain Decoding

dc.authorid Alkan, Sarper/0000-0002-3781-4951
dc.authorscopusid 56247204100
dc.authorscopusid 6701826249
dc.authorwosid Yarman, Fatos/Aap-5605-2021
dc.contributor.author Alkan, Sarper
dc.contributor.author Yarman-Vural, Fatos T.
dc.date.accessioned 2020-04-19T23:54:26Z
dc.date.available 2020-04-19T23:54:26Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Alkan, Sarper] Middle E Tech Univ, Dept Cognit Sci, TR-06531 Ankara, Turkey; [Alkan, Sarper] Cankaya Univ, Dept Mechatron Engn, Ankara, Turkey; [Yarman-Vural, Fatos T.] Middle E Tech Univ, Fac Comp Enginering, TR-06531 Ankara, Turkey en_US
dc.description Alkan, Sarper/0000-0002-3781-4951 en_US
dc.description.abstract In this study, we propose a new method which ensembles the brain regions for brain decoding. The ensemble is generated by clustering the fMRI images recorded during an experimental set-up which measures the cognitive states associated to semantic categories. Initially, voxel clusters are formed by using hierarchical agglomerative clustering with correlation as the similarity metric. Then, for each voxel cluster, a support vector machine (SVM) classifier is trained to estimate the class-posteriori probabilities. Lastly, the class-posteriori probabilities are ensembled by concatenating them under the same feature space, which are then used to train a meta-layer SVM for the final classification of the cognitive states. By using the voxel clusters, we aim to utilize the distributed, but complementing nature of the semantic representations in the brain and improve the classification accuracy. Thus, we make an existential claim that the brain regions provide a natural basis for ensemble learning which should be superior to the random clusters formed over a selected set of voxels. Our approach yields to better classification accuracies in Mitchell [1] dataset on most of the subjects, when compared to state-of-the-art which emphasizes voxel selection and ensemble learning with random subspaces. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citation Alkan, Sarper; Yarman-Vural, Fatos T., "Ensembling Brain Regions for Brain Decoding", 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), pp. 2948-2951, (2015). en_US
dc.identifier.doi 10.1109/EMBC.2015.7319010
dc.identifier.endpage 2951 en_US
dc.identifier.isbn 9781424492701
dc.identifier.issn 1557-170X
dc.identifier.issn 1558-4615
dc.identifier.pmid 26736910
dc.identifier.scopus 2-s2.0-84953319247
dc.identifier.scopusquality N/A
dc.identifier.startpage 2948 en_US
dc.identifier.uri https://doi.org/10.1109/EMBC.2015.7319010
dc.identifier.volume 2015-November en_US
dc.identifier.wos WOS:000371717203057
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC) -- AUG 25-29, 2015 -- Milan, ITALY en_US
dc.relation.ispartofseries IEEE Engineering in Medicine and Biology Society Conference Proceedings
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.title Ensembling Brain Regions for Brain Decoding tr_TR
dc.title Ensembling Brain Regions for Brain Decoding en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: