Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method

dc.authorscopusid 36905749100
dc.authorscopusid 35114621500
dc.authorscopusid 56513462000
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Tasbozan, Orkun/Kyg-2624-2024
dc.authorwosid Çenesiz, Yücel/Hkm-8779-2023
dc.contributor.author Tasbozan, Orkun
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Cenesiz, Yucel
dc.contributor.author Kurt, Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2019-12-18T12:03:50Z
dc.date.available 2019-12-18T12:03:50Z
dc.date.issued 2017
dc.department Çankaya University en_US
dc.department-temp [Tasbozan, Orkun; Kurt, Ali] Mustafa Kemal Univ, Dept Math, Antakya, Turkey; [Cenesiz, Yucel] Selcuk Univ, Dept Math, Konya, Turkey; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description.abstract Modelling of physical systems mathematically, produces nonlinear evolution equations. Most of the physical systems in nature are intrinsically nonlinear, therefore modelling such systems mathematically leads us to nonlinear evolution equations. The analysis of the wave solutions corresponding to the nonlinear partial differential equations (NPDEs), has a vital role for studying the nonlinear physical events. This article is written with the intention of finding the wave solutions of Nizhnik-Novikov-Veselov and Klein-Gordon equations. For this purpose, the exp-function method, which is based on a series of exponential functions, is employed as a tool. This method is an useful and suitable tool to obtain the analytical solutions of a considerable number of nonlinear FDEs within a conformable derivative. en_US
dc.description.publishedMonth 1
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Tasbozan, Orkun; Cenesiz, Yucel; Kurt, Ali; et al. (2017). New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method, Open Physics, 15(1), 647-651. en_US
dc.identifier.doi 10.1515/phys-2017-0075
dc.identifier.endpage 651 en_US
dc.identifier.issn 2391-5471
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85035131485
dc.identifier.scopusquality Q2
dc.identifier.startpage 647 en_US
dc.identifier.uri https://doi.org/10.1515/phys-2017-0075
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000417931400010
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Zoo en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 45
dc.subject Exp-Function Method en_US
dc.subject Nizhnik-Novikov-Veselov Equation en_US
dc.subject Klein-Gordon Equation en_US
dc.subject Conformable Derivative en_US
dc.title New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method tr_TR
dc.title New Analytical Solutions for Conformable Fractional Pdes Arising in Mathematical Physics by Exp-Function Method en_US
dc.type Article en_US
dc.wos.citedbyCount 38
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
433.83 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: