Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson S-B statistical distribution function

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The impact strength of Nylon 6 can be further improved by blending it with ethylene-butyl acrylate-maleic anhydride elastomer. The blending is achieved in solution phase. Due to incompatibility of Nylon 6 and the elastomer, a special mixture of solvents is used to dissolve both components. The solution is electrospun, and the effects of the process parameters on the expected radii of nanofibers are investigated. The effects of process parameters such as polymer concentration in solution, electrical field, diameter of the syringe needle, feed rate, and collector geometry on nanofibers were investigated. Statistical analysis is carried out using the Johnson S-B distribution. A relation is proposed to relate the effect of the process parameters feed rate, electrical voltage, and tip to collector distance on the expected diameter of fibers. It is found that concentration and electrical field have a profound effect on the diameter of fibers compared to those of the syringe diameter and feed rate

Description

Keywords

Morphology, Fibers

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Biber, E...et al (2010). Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson S-B statistical distribution function. Applied Physics A Materials Science&Processing, 99(2), 477-487. http://dx.doi.org/10.1007/s00339-010-5559-6

WoS Q

Scopus Q

Source

Applied Physics A Materials Science&Processing

Volume

99

Issue

2

Start Page

477

End Page

487