Fractional Propagation of Short Light Pulses in Monomode Optical Fibers: Comparison of Beta Derivative and Truncated M-Fractional Derivative
dc.authorid | Jhangeer, Adil/0000-0001-6747-425X | |
dc.authorid | Awrejcewicz, Jan/0000-0003-0387-921X | |
dc.authorscopusid | 57213314244 | |
dc.authorscopusid | 36668817200 | |
dc.authorscopusid | 7007114678 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57216081343 | |
dc.authorwosid | Riaz, Muhammad/Aba-9824-2021 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Jhangeer, Adil/G-4301-2018 | |
dc.authorwosid | Awrejcewicz, Jan/G-9123-2018 | |
dc.contributor.author | Riaz, Muhammad Bilal | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Jhangeer, Adil | |
dc.contributor.author | Awrejcewicz, Jan | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Tahir, Sana | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2024-03-28T12:18:05Z | |
dc.date.available | 2024-03-28T12:18:05Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Riaz, Muhammad Bilal; Awrejcewicz, Jan] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego St, PL-90924 Lodz, Poland; [Riaz, Muhammad Bilal; Tahir, Sana] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan; [Jhangeer, Adil] Namal Inst, Dept Math, 30 Km Talagang Rd, Mianwali 42250, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 077125, Romania | en_US |
dc.description | Jhangeer, Adil/0000-0001-6747-425X; Awrejcewicz, Jan/0000-0003-0387-921X | en_US |
dc.description.abstract | This study is dedicated to the computation and analysis of solitonic structures of a nonlinear Sasa-Satsuma equation that comes in handy to understand the propagation of short light pulses in the monomode fiber optics with the aid of beta derivative and truncated M-fractional derivative. We employ a new direct algebraic technique for the nonlinear Sasa-Satsuma equation to derive novel soliton solutions. A variety of soliton solutions are retrieved in trigonometric, hyperbolic, exponential, rational forms. The vast majority of obtained solutions represent the lead of this method on other techniques. The prime advantage of the considered technique over the other techniques is that it provides more diverse solutions with some free parameters. Moreover, the fractional behavior of the obtained solutions is analyzed thoroughly by using two and three-dimensional graphs. This shows that for lower fractional orders, i.e., beta = 0.1, the magnitude of truncated Mfractional derivative is greater whereas for increasing fractional orders, i.e., beta = 0.7 and beta = 0.99, the magnitude remains the same for both definitions except for a phase shift in some spatial domain that eventually vanishes and two curves coincide. | en_US |
dc.description.publishedMonth | 3 | |
dc.description.sponsorship | Polish National Science Centre (Grant OPUS 18) [2019/35/B/ST8/00980] | en_US |
dc.description.sponsorship | center dot Polish National Science Centre (Grant OPUS 18 No. 2019/35/B/ST8/00980; Funder ID: 10.13039/501100004281). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Riaz, Muhammad Bilal;...et.al. (2022). | en_US |
dc.identifier.doi | 10.1115/1.4052876 | |
dc.identifier.issn | 1555-1423 | |
dc.identifier.issn | 1555-1415 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85126517891 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1115/1.4052876 | |
dc.identifier.volume | 17 | en_US |
dc.identifier.wos | WOS:000749733100002 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Asme | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 9 | |
dc.subject | Nonlinear Sasa-Satsuma Equation | en_US |
dc.subject | Beta Derivative | en_US |
dc.subject | Truncated M- Fractional Derivative | en_US |
dc.subject | Soliton Solutions | en_US |
dc.subject | Direct Algebraic Method | en_US |
dc.title | Fractional Propagation of Short Light Pulses in Monomode Optical Fibers: Comparison of Beta Derivative and Truncated M-Fractional Derivative | tr_TR |
dc.title | Fractional Propagation of Short Light Pulses in Monomode Optical Fibers: Comparison of Beta Derivative and Truncated M-Fractional Derivative | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 9 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: