Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorNasir, Nor Ain Azeany Moh
dc.contributor.authorShahzad, Faisal
dc.contributor.authorNisar, Kottakkaran Sooppy
dc.contributor.authorShoaib, Muhammad
dc.contributor.authorAhmad, Sohail
dc.contributor.authorIsmail, Khadiga Ahmed
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-05-08T08:26:10Z
dc.date.available2024-05-08T08:26:10Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractPrandtl–Eyring hybrid nanofluid (P-EHNF) heat transfer and entropy generation were studied in this article. A slippery heated surface is used to test the flow and thermal transport properties of P-EHNF nanofluid. This investigation will also examine the effects of nano solid tubes morphologies, porosity materials, Cattaneo–Christov heat flow, and radiative flux. Predominant flow equations are written as partial differential equations (PDE). To find the solution, the PDEs were transformed into ordinary differential equations (ODEs), then the Keller box numerical approach was used to solve the ODEs. Single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) using Engine Oil (EO) as a base fluid are studied in this work. The flow, temperature, drag force, Nusselt amount, and entropy measurement visually show significant findings for various variables. Notably, the comparison of P-EHNF's (MWCNT-SWCNT/EO) heat transfer rate with conventional nanofluid (SWCNT-EO) results in ever more significant upsurges. Spherical-shaped nano solid particles have the highest heat transport, whereas lamina-shaped nano solid particles exhibit the lowest heat transport. The model's entropy increases as the size of the nanoparticles get larger. A similar effect is seen when the radiative flow and the Prandtl–Eyring variable-II are improved.en_US
dc.description.publishedMonth12
dc.identifier.citationJamshed, Wasim...et.al. (2021). "The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique", Scientific Reports, Vol.11, No.1, pp.1-24.en_US
dc.identifier.doi10.1038/s41598-021-02756-4
dc.identifier.endpage24en_US
dc.identifier.issn20452322
dc.identifier.issue1en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/8188
dc.identifier.volume11en_US
dc.language.isoenen_US
dc.relation.ispartofScientific Reportsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleThe improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box techniquetr_TR
dc.titleThe Improved Thermal Efficiency of Prandtl–eyring Hybrid Nanofluid Via Classical Keller Box Techniqueen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: