Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Grey and black optical solitary waves, and modulation instability analysis to the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity

dc.authoridIsa Aliyu, Aliyu/0000-0002-9756-7374
dc.authoridYusuf, Abdullahi/0000-0002-8308-7943
dc.authorscopusid56051853500
dc.authorscopusid57199279247
dc.authorscopusid57193690600
dc.authorscopusid7005872966
dc.authorwosidInc, Mustafa/C-4307-2018
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.authorwosidIsa Aliyu, Aliyu/L-3765-2017
dc.authorwosidYusuf, Abdullahi/L-9956-2018
dc.contributor.authorInc, Mustafa
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorAliyu, Aliyu Isa
dc.contributor.authorYusuf, Abdullahi
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-02-26T13:13:15Z
dc.date.available2020-02-26T13:13:15Z
dc.date.issued2019
dc.departmentÇankaya Universityen_US
dc.department-temp[Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi] Firat Univ, Dept Math, TR-23119 Elazig, Turkey; [Aliyu, Aliyu Isa; Yusuf, Abdullahi] Fed Univ Dutse, Dept Math, Jigawa, Nigeria; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romaniaen_US
dc.descriptionIsa Aliyu, Aliyu/0000-0002-9756-7374; Yusuf, Abdullahi/0000-0002-8308-7943en_US
dc.description.abstractThis paper addresses the nonlinear Schrodinger equation (NLSE) with Kerr law nonlinearity and perturbation terms in optical fibre. A class of grey and black optical solitary wave solutions of this equation are retrieved by adopting an appropriate solitary wave ansatz solution. These types of solitary waves play a vital role in understanding various physical phenomena in nonlinear systems. This lead to a constraint condition on the solitary wave parameters which must hold for the solitary waves to exist. Moreover, the modulation instability (MI) analysis of the model is studied by employing the concept of linear-stability analysis (LSA) and the MI gain spectrum is got. Physical interpretations of the acquired results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviours of the equation.en_US
dc.description.publishedMonth3
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationInc, Mustafa...et al. (2019). "Grey and black optical solitary waves, and modulation instability analysis to the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity", Journal of Modern Optics, Vol. 66, No. 6, pp. 647-651.en_US
dc.identifier.doi10.1080/09500340.2018.1559953
dc.identifier.endpage651en_US
dc.identifier.issn0950-0340
dc.identifier.issn1362-3044
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85059584222
dc.identifier.scopusqualityQ3
dc.identifier.startpage647en_US
dc.identifier.urihttps://doi.org/10.1080/09500340.2018.1559953
dc.identifier.volume66en_US
dc.identifier.wosWOS:000459542100008
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSolitary Wave Ansatz Solutionen_US
dc.subjectModulation Instabilityen_US
dc.subjectOptical Solitary Wavesen_US
dc.subjectPerturbed Nlseen_US
dc.titleGrey and black optical solitary waves, and modulation instability analysis to the perturbed nonlinear Schrodinger equation with Kerr law nonlinearitytr_TR
dc.titleGrey and Black Optical Solitary Waves, and Modulation Instability Analysis To the Perturbed Nonlinear Schrodinger Equation With Kerr Law Nonlinearityen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: