Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In the present research study, for a given multiterm boundary value problem (BVP) involving the Riemann-Liouville fractional differential equation of variable order, the existence properties are analyzed. To achieve this aim, we firstly investigate some specifications of this kind of variable-order operators, and then we derive the required criteria to confirm the existence of solution and study the stability of the obtained solution in the sense of Ulam-Hyers-Rassias (UHR). All results in this study are established with the help of the Darbo's fixed point theorem (DFPT) combined with Kuratowski measure of noncompactness (KMNC). We construct an example to illustrate the validity of our observed results.

Description

Keywords

Fractional Differential Equations of Variable Order, Boundary Value Problem, Darbo’s Fixed Point Theorem, Measure of Noncompactness, Ulam–Hyers–Rassias Stability

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Benkerrouche, Amar...et al. (2021). "Boundary value problem for nonlinear fractional differential equations of variable order via Kuratowski MNC technique", Advances in Difference Equations, Vol. 2021, No. 1.

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

2021

Issue

1

Start Page

End Page