Production and Retrieval of Rough Classes in Multi Relations
dc.authorid | Tolun, Mehmet Resit/0000-0002-8478-7220 | |
dc.authorscopusid | 6603446979 | |
dc.authorscopusid | 55902090100 | |
dc.authorscopusid | 7006606908 | |
dc.authorwosid | Görür, Abdül Kadir/Aay-1590-2021 | |
dc.authorwosid | Tolun, Mehmet Resit/Kcj-5958-2024 | |
dc.contributor.author | Tolun, M.R. | |
dc.contributor.author | Sever, H. | |
dc.contributor.author | Gorur, A.K. | |
dc.date.accessioned | 2025-05-13T13:42:01Z | |
dc.date.available | 2025-05-13T13:42:01Z | |
dc.date.issued | 2007 | |
dc.department | Çankaya University | en_US |
dc.department-temp | Tolun M.R., Çankaya University, Dept. of Computer Engineering; Sever H., Çankaya University, Dept. of Computer Engineering; Gorur A.K., Çankaya University, Dept. of Computer Engineering | en_US |
dc.description | IEEE Computational Intelligence Society (CIS) | en_US |
dc.description | Tolun, Mehmet Resit/0000-0002-8478-7220 | en_US |
dc.description.abstract | Organizational memory in today's business world forms basis for organizational learning, which is the ability of an organization to gain insight and understanding from experience through experimentation, observation, analysis, and a willingness to examine both successes and failures. This basically requires consideration of different aspects of knowledge that may reside on top of a conventional information management system. Of them, representation, retrieval and production issues of meta patterns constitute to the main theme of this article. Particularly we are interested in a formal approach to handle rough concepts. We utilize rough classifiers to propose a preliminary framework based on minimal term sets with p-norms to extract meta patterns. We describe a relational rule induction approach, which is called rila. Experimental results are provided on the mutagenesis, and the KDD Cup 2001 genes data sets. © 2007 IEEE. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.doi | 10.1109/GRC.2007.4403092 | |
dc.identifier.endpage | 198 | en_US |
dc.identifier.isbn | 076953032X | |
dc.identifier.isbn | 9780769530321 | |
dc.identifier.scopus | 2-s2.0-46749092989 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 192 | en_US |
dc.identifier.uri | https://doi.org/10.1109/GRC.2007.4403092 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9964 | |
dc.identifier.wos | WOS:000252984500040 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Ieee Computer Soc | en_US |
dc.relation.ispartof | Proceedings - 2007 IEEE International Conference on Granular Computing, GrC 2007 -- 2007 IEEE International Conference on Granular Computing, GrC 2007 -- 2 November 2007 through 4 November 2007 -- San Jose, CA -- 72548 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Classifier | en_US |
dc.subject | Logic | en_US |
dc.subject | Optimistic Estimate Pruning | en_US |
dc.subject | P-Norm Retrieval | en_US |
dc.subject | Relational Rule Induction | en_US |
dc.subject | Rough Sets | en_US |
dc.subject | Rule Selection Strategies | en_US |
dc.title | Production and Retrieval of Rough Classes in Multi Relations | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication |