Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Big Data Reduction and Visualization Using the K-Means Algorithm

dc.contributor.author Dökeroğlu, Tansel
dc.contributor.author Kızılduman, Hale Sema
dc.contributor.author Dökeroğlu, Tansel
dc.contributor.authorID 234173 tr_TR
dc.contributor.other Yazılım Mühendisliği
dc.date.accessioned 2024-02-14T07:49:02Z
dc.date.available 2024-02-14T07:49:02Z
dc.date.issued 2022
dc.department Çankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümü en_US
dc.description.abstract A huge amount of data is being produced every day in our era. In addition to high-performance processing approaches, efficiently visualizing this quantity of data (up to Terabytes) remains a major difficulty. In this study, we use the well-known clustering method K-means as a data reduction strategy that keeps the visual quality of the provided huge data as high as possible. The centroids of the dataset are used to display the distribution properties of data in a straightforward manner. Our data comes from a recent Kaggle big data set (Click Through Rate), and it is displayed using Box plots on reduced datasets, compared to the original plots. It is discovered that K-means is an effective strategy for reducing the amount of huge data in order to view the original data without sacrificing its distribution information quality en_US
dc.description.publishedMonth 7
dc.identifier.citation Akyol, H.; Kızılduman, H.S.; Dökeroğlu, T. (2022). "Big Data Reduction and Visualization Using the K-Means Algorithm", Ankara Science University, Researcher, Vol.2, No.1., pp.40-45. en_US
dc.identifier.doi 10.55185/researcher.1135824
dc.identifier.endpage 45 en_US
dc.identifier.issn 2717-9494
dc.identifier.issue 1 en_US
dc.identifier.startpage 40 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/7194
dc.identifier.volume 2 en_US
dc.language.iso en en_US
dc.relation.ispartof Ankara Science University, Researcher en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Big Data en_US
dc.subject Data Reduction en_US
dc.subject Visualization en_US
dc.subject K-Means en_US
dc.title Big Data Reduction and Visualization Using the K-Means Algorithm tr_TR
dc.title Big Data Reduction and Visualization Using the K-Means Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isAuthorOfPublication.latestForDiscovery 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
545.55 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: