Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Big Data Reduction and Visualization Using the K-Means Algorithm

dc.contributor.authorAkyol, Hakan
dc.contributor.authorKızılduman, Hale Sema
dc.contributor.authorDökeroğlu, Tansel
dc.contributor.authorID234173tr_TR
dc.date.accessioned2024-02-14T07:49:02Z
dc.date.available2024-02-14T07:49:02Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractA huge amount of data is being produced every day in our era. In addition to high-performance processing approaches, efficiently visualizing this quantity of data (up to Terabytes) remains a major difficulty. In this study, we use the well-known clustering method K-means as a data reduction strategy that keeps the visual quality of the provided huge data as high as possible. The centroids of the dataset are used to display the distribution properties of data in a straightforward manner. Our data comes from a recent Kaggle big data set (Click Through Rate), and it is displayed using Box plots on reduced datasets, compared to the original plots. It is discovered that K-means is an effective strategy for reducing the amount of huge data in order to view the original data without sacrificing its distribution information qualityen_US
dc.description.publishedMonth7
dc.identifier.citationAkyol, H.; Kızılduman, H.S.; Dökeroğlu, T. (2022). "Big Data Reduction and Visualization Using the K-Means Algorithm", Ankara Science University, Researcher, Vol.2, No.1., pp.40-45.en_US
dc.identifier.doi10.55185/researcher.1135824
dc.identifier.endpage45en_US
dc.identifier.issn2717-9494
dc.identifier.issue1en_US
dc.identifier.startpage40en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/7194
dc.identifier.volume2en_US
dc.language.isoenen_US
dc.relation.ispartofAnkara Science University, Researcheren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBig Dataen_US
dc.subjectData Reductionen_US
dc.subjectVisualizationen_US
dc.subjectK-Meansen_US
dc.titleBig Data Reduction and Visualization Using the K-Means Algorithmtr_TR
dc.titleBig Data Reduction and Visualization Using the K-Means Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
545.55 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: