Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Optical Soc Amer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The scintillation index is formulated for modified Bessel-Gaussian beams propagating in weakly turbulent media. Numerical calculations applied directly to the derived triple integral show that, for off-axis positions, the modified Bessel-Gaussian beams of higher than zero order scintillate less than Gaussian beams at large input beam sizes and low beam orders with the increasing width parameter initially contributing positively to this phenomenon of less scintillation. As the beam order exceeds two, this advantage is diminished. The modified Bessel-Gaussian beam of order zero is a special case, however, exhibiting lowest scintillation at small input beam sizes. When considered against the propagation length, higher-order modified Bessel-Gaussian beams continue to offer less scintillation than those of order zero. At various radial positions, the scintillation index of modified Bessel-Gaussian beams with orders higher than zero attains small values toward the beam edges but rises sharply when approaching the beam axis. The effect of inner and outer scales of turbulence is also studied, and it is found that while increasing the inner scale of turbulence seems to cause increases in scintillation, the influence of the outer scale is hardly noticeable

Description

Keywords

Atmospheric Turbulence, Intensity Fluctuations, Annular Beams, Aperture, Modes

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Eyyuboğlu, H.T...et al. (2009). Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media. Journal of the Optical Society of America A-Optics Image Science and Vision, 26(2), 387-394.

WoS Q

Scopus Q

Source

Journal of the Optical Society of America A-Optics Image Science and Vision

Volume

26

Issue

2

Start Page

387

End Page

394