Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A fite type result for sequental fractional differintial equations

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Dynamic Publishers, inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Given the solution f of the sequential fractional differential equation aD(t)(alpha)(aD(t)(alpha) f) + P(t)f = 0, t is an element of [b, a], where -infinity < a < b < c < + infinity, alpha is an element of (1/2, 1) and P : [a, + infinity) -> [0, P-infinity], P-infinity < + infinity, is continuous. Assume that there exist t(1),t(2) is an element of [b, c] such that f(t(1)) = (aD(t)(alpha))(t(2)) = 0. Then, we establish here a positive lower bound for c - a which depends solely on alpha, P-infinity. Such a result might be useful in discussing disconjugate fractional differential equations and fractional interpolation, similarly to the case of (integer order) ordinary differential equations.

Description

Jarad, Fahd/0000-0002-3303-0623; Abdeljawad, Thabet/0000-0002-8889-3768; Trujillo, Juan J./0000-0001-8700-6410

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Abdeljavad, T...et al. (2010). A fite type result for sequental fractional differintial equations. Dynamic System and Applications, 19(2), 383-394.

WoS Q

N/A

Scopus Q

N/A

Source

Volume

19

Issue

2

Start Page

383

End Page

394

URI