Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Generalized fractional differential equations for past dynamic

dc.authorscopusid7005872966
dc.authorscopusid55614612800
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.authorwosidShiri, Babak/T-7172-2019
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorShiri, Babak
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-03-28T12:45:33Z
dc.date.available2024-03-28T12:45:33Z
dc.date.issued2022
dc.departmentÇankaya Universityen_US
dc.department-temp[Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ Hosp, Dept Med Res, China Med, Taichung, Taiwan; [Shiri, Babak] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R Chinaen_US
dc.description.abstractWell-posedness of the terminal value problem for nonlinear systems of generalized fractional differential equations is studied. The generalized fractional operator is formulated with a classical operator and a related weighted space. The terminal value problem is transformed into weakly singular Fredholm and Volterra integral equations with delay. A lower bound for the well-posedness of the corresponding problem is introduced. A collocation method covering all problems with generalized derivatives is introduced and analyzed. Illustrative examples for validation and application of the proposed methods are supported. The effects of various fractional derivatives on the solution, wellposedness, and fitting error are studied. An application for estimating the population of diabetes cases in the past is introduced.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationBaleanu, Dumitru; Shiri, B. (2022). "Generalized fractional differential equations for past dynamic", AIMS Mathematics, Vol.7, No.8, pp.14394-14418.en_US
dc.identifier.doi10.3934/math.2022793
dc.identifier.endpage14418en_US
dc.identifier.issn2473-6988
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85131533699
dc.identifier.scopusqualityQ1
dc.identifier.startpage14394en_US
dc.identifier.urihttps://doi.org/10.3934/math.2022793
dc.identifier.volume7en_US
dc.identifier.wosWOS:000823103000002
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherAmer inst Mathematical Sciences-aimsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTerminal Value Problemsen_US
dc.subjectGeneralized Fractional Integralen_US
dc.subjectSystem Of Generalized Fractional Differential Equationsen_US
dc.subjectHadamard Fractional Operatoren_US
dc.subjectKatugampola Fractional Operatoren_US
dc.subjectCollocation Methodsen_US
dc.titleGeneralized fractional differential equations for past dynamictr_TR
dc.titleGeneralized Fractional Differential Equations for Past Dynamicen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
502.2 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: