Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning
dc.authorid | Ozbayoglu, Murat/0000-0001-7998-5735 | |
dc.authorscopusid | 57193615320 | |
dc.authorscopusid | 57207586168 | |
dc.authorscopusid | 57947593100 | |
dc.authorscopusid | 6603501593 | |
dc.authorwosid | Ozbayoglu, Murat/H-2328-2011 | |
dc.contributor.author | Onal, Aras Can | |
dc.contributor.author | Doğdu, Erdoğan | |
dc.contributor.author | Sezer, Omer Berat | |
dc.contributor.author | Ozbayoglu, Murat | |
dc.contributor.author | Dogdu, Erdogan | |
dc.contributor.other | Bilgisayar Mühendisliği | |
dc.date.accessioned | 2020-03-19T13:06:02Z | |
dc.date.available | 2020-03-19T13:06:02Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Onal, Aras Can; Sezer, Omer Berat; Ozbayoglu, Murat] TOBB Univ Econ & Technol, Dept Comp Engn, TR-06560 Ankara, Turkey; [Dogdu, Erdogan] Cankaya Univ, Dept Comp Engn, TR-06790 Ankara, Turkey; [Dogdu, Erdogan] Georgia State Univ, Atlanta, GA 30302 USA | en_US |
dc.description | Cisco; Elsevier; IEEE; IEEE Computer Society; The Mit Press | en_US |
dc.description | Ozbayoglu, Murat/0000-0001-7998-5735 | en_US |
dc.description.abstract | In recent years, big data and Internet of Things (IoT) implementations started getting more attention. Researchers focused on developing big data analytics solutions using machine learning models. Machine learning is a rising trend in this field due to its ability to extract hidden features and patterns even in highly complex datasets. In this study, we used our Big Data IoT Framework in a weather data analysis use case. We implemented weather clustering and sensor anomaly detection using a publicly available dataset. We provided the implementation details of each framework layer (acquisition, ETL, data processing, learning and decision) for this particular use case. Our chosen learning model within the library is Scikit-Learn based k-means clustering. The data analysis results indicate that it is possible to extract meaningful information from a relatively complex dataset using our framework. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | Onal, Aras Can...et al. "Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning, 2017 IEEE International Conference On Big Data (Big Data), pp.2037-2046, (2017). | en_US |
dc.identifier.doi | 10.1109/BigData.2017.8258150 | |
dc.identifier.endpage | 2046 | en_US |
dc.identifier.isbn | 9781538627150 | |
dc.identifier.issn | 2639-1589 | |
dc.identifier.scopus | 2-s2.0-85047833066 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 2037 | en_US |
dc.identifier.uri | https://doi.org/10.1109/BigData.2017.8258150 | |
dc.identifier.volume | 2018-January | en_US |
dc.identifier.wos | WOS:000428073702004 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | IEEE International Conference on Big Data (IEEE Big Data) -- DEC 11-14, 2017 -- Boston, MA | en_US |
dc.relation.ispartofseries | IEEE International Conference on Big Data | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 56 | |
dc.subject | Internet Of Things | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Framework | en_US |
dc.subject | Big Data Analytics | en_US |
dc.subject | Weather Data Analysis | en_US |
dc.subject | Anomaly Detection | en_US |
dc.subject | Fault Detection | en_US |
dc.subject | Clustering | en_US |
dc.title | Weather data analysis and sensor fault detection using an extended ıot framework with semantics, big data, and machine learning | tr_TR |
dc.title | Weather Data Analysis and Sensor Fault Detection Using an Extended Iot Framework With Semantics, Big Data, and Machine Learning | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 33 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0d453674-7998-4d57-a06c-03e13bb1e314 | |
relation.isAuthorOfPublication.latestForDiscovery | 0d453674-7998-4d57-a06c-03e13bb1e314 | |
relation.isOrgUnitOfPublication | 12489df3-847d-4936-8339-f3d38607992f | |
relation.isOrgUnitOfPublication.latestForDiscovery | 12489df3-847d-4936-8339-f3d38607992f |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: