Oscillation of even order nonlinear delay dynamic equations on time scales
dc.authorid | Zafer, Agacik/0000-0001-8446-1223 | |
dc.authorscopusid | 6603725831 | |
dc.authorscopusid | 34768672100 | |
dc.authorscopusid | 7202081436 | |
dc.authorscopusid | 56550216700 | |
dc.authorwosid | Zafer, Agacik/A-1011-2009 | |
dc.contributor.author | Erbe, Lynn | |
dc.contributor.author | Mert, Raziye | |
dc.contributor.author | Mert, Raziye | |
dc.contributor.author | Peterson, Allan | |
dc.contributor.author | Zafer, Agacik | |
dc.contributor.authorID | 19485 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2017-03-14T08:45:37Z | |
dc.date.available | 2017-03-14T08:45:37Z | |
dc.date.issued | 2013 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Erbe, Lynn; Peterson, Allan] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA; [Mert, Raziye] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey; [Zafer, Agacik] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey | en_US |
dc.description | Zafer, Agacik/0000-0001-8446-1223 | en_US |
dc.description.abstract | One of the important methods for studying the oscillation of higher order differential equations is to make a comparison with second order differential equations. The method involves using Taylor's Formula. In this paper we show how such a method can be used for a class of even order delay dynamic equations on time scales via comparison with second order dynamic inequalities. In particular, it is shown that nonexistence of an eventually positive solution of a certain second order delay dynamic inequality is sufficient for oscillation of even order dynamic equations on time scales. The arguments are based on Taylor monomials on time scales. | en_US |
dc.description.publishedMonth | 3 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Erbe, L...et al. (2013). Oscillation of even order nonlinear delay dynamic equations on time scales. Czechoslovak Mathematical Journal, 63(1), 265-279. | en_US |
dc.identifier.doi | 10.1007/s10587-013-0017-1 | |
dc.identifier.endpage | 279 | en_US |
dc.identifier.issn | 0011-4642 | |
dc.identifier.issn | 1572-9141 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-84875469477 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 265 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10587-013-0017-1 | |
dc.identifier.volume | 63 | en_US |
dc.identifier.wos | WOS:000316756300017 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 18 | |
dc.subject | Time Scale | en_US |
dc.subject | Even Order | en_US |
dc.subject | Delay | en_US |
dc.subject | Oscillation | en_US |
dc.subject | Taylor Monomial | en_US |
dc.title | Oscillation of even order nonlinear delay dynamic equations on time scales | tr_TR |
dc.title | Oscillation of Even Order Nonlinear Delay Dynamic Equations on Time Scales | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 17cf60c3-e79c-47a7-8e14-2b7060e2258e | |
relation.isAuthorOfPublication.latestForDiscovery | 17cf60c3-e79c-47a7-8e14-2b7060e2258e | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |