Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fast Binary Logistic Regression

dc.authorid Nar, Fatih/0000-0002-3003-8136
dc.authorscopusid 25651951700
dc.authorscopusid 9269153000
dc.authorwosid Nar, Fatih/B-8130-2013
dc.contributor.author Saran, Nurdan Ayse
dc.contributor.author Nar, Fatih
dc.date.accessioned 2025-05-13T11:57:06Z
dc.date.available 2025-05-13T11:57:06Z
dc.date.issued 2025
dc.department Çankaya University en_US
dc.department-temp [Saran, Nurdan Ayse] Cankaya Univ, Dept Comp Engn, Ankara, Turkiye; [Nar, Fatih] Ankara Yildirim Beyazit Univ, Dept Comp Engn, Ankara, Turkiye en_US
dc.description Nar, Fatih/0000-0002-3003-8136 en_US
dc.description.abstract This study presents a novel numerical approach that improves the training efficiency of binary logistic regression, a popular statistical model in the machine learning community. Our method achieves training times an order of magnitude faster than traditional logistic regression by employing a novel Soft-Plus approximation, which enables reformulation of logistic regression parameter estimation into matrix-vector form. We also adopt the L-f-norm penalty, which allows using fractional norms, including the L-2-norm, L-1-norm, and L-0-norm, to regularize the model parameters. We put L-f-norm formulation in matrix-vector form, providing flexibility to include or exclude penalization of the intercept term when applying regularization. Furthermore, to address the common problem of collinear features, we apply singular value decomposition (SVD), resulting in a low-rank representation commonly used to reduce computational complexity while preserving essential features and mitigating noise. Moreover, our approach incorporates a randomized SVD alongside a newly developed SVD with row reduction (SVD-RR) method, which aims to manage datasets with many rows and features efficiently. This computational efficiency is crucial in developing a generalized model that requires repeated training over various parameters to balance bias and variance. We also demonstrate the effectiveness of our fast binary logistic regression (FBLR) method on various datasets from the OpenML repository in addition to synthetic datasets. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.7717/peerj-cs.2579
dc.identifier.issn 2376-5992
dc.identifier.pmid 40062264
dc.identifier.scopus 2-s2.0-85219135186
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.7717/peerj-cs.2579
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:001479745800001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Peerj inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Logistic Regression en_US
dc.subject Low-Rank en_US
dc.subject Singular Value Decomposition en_US
dc.subject L-F-Norm Regularization en_US
dc.title Fast Binary Logistic Regression en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files