A Hybrid Functions Numerical Scheme for Fractional Optimal Control Problems: Application To Nonanalytic Dynamic Systems
| dc.contributor.author | Moradi, L. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Jajarmi, A. | |
| dc.contributor.author | Mohammadi, F. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-03-23T07:42:16Z | |
| dc.date.accessioned | 2025-09-18T12:48:07Z | |
| dc.date.available | 2020-03-23T07:42:16Z | |
| dc.date.available | 2025-09-18T12:48:07Z | |
| dc.date.issued | 2018 | |
| dc.description | Mohammadi, Fakhrodin/0000-0001-9814-0367; Moradi, Leila/0000-0002-1545-8263 | en_US |
| dc.description.abstract | In this paper, a numerical scheme based on hybrid Chelyshkov functions (HCFs) is presented to solve a class of fractional optimal control problems (FOCPs). To this end, by using the orthogonal Chelyshkov polynomials, the HCFs are constructed and a general formulation for their operational matrix of the fractional integration, in the Riemann-Liouville sense, is derived. This operational matrix together with HCFs are used to reduce the FOCP to a system of algebraic equations, which can be solved by any standard iterative algorithm. Moreover, the application of presented method to the problems with a nonanalytic dynamic system is investigated. Numerical results confirm that the proposed HCFs method can achieve spectral accuracy to approximate the solution of FOCPs. | en_US |
| dc.description.publishedMonth | 11 | |
| dc.identifier.citation | Mohammadi, F.; Moradi, L.; Baleanu, D. "A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems", Journal of Vibration and Control, Vol. 24, No. 21. pp. 5030-5043, (2018). | en_US |
| dc.identifier.doi | 10.1177/1077546317741769 | |
| dc.identifier.issn | 1077-5463 | |
| dc.identifier.issn | 1741-2986 | |
| dc.identifier.scopus | 2-s2.0-85045293850 | |
| dc.identifier.uri | https://doi.org/10.1177/1077546317741769 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11964 | |
| dc.language.iso | en | en_US |
| dc.publisher | Sage Publications Ltd | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Optimal Control Problems | en_US |
| dc.subject | Hybrid Chelyshkov Functions | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Singular Dynamic System | en_US |
| dc.subject | Gauss-Legendre Quadrature | en_US |
| dc.title | A Hybrid Functions Numerical Scheme for Fractional Optimal Control Problems: Application To Nonanalytic Dynamic Systems | en_US |
| dc.title | A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Mohammadi, Fakhrodin/0000-0001-9814-0367 | |
| gdc.author.id | Moradi, Leila/0000-0002-1545-8263 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 56740408900 | |
| gdc.author.scopusid | 57201585522 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 34880044900 | |
| gdc.author.wosid | Jajarmi, Amin/O-7701-2019 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Mohammadi, Fakhrodin/F-7748-2015 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Mohammadi, F.; Moradi, L.] Univ Hormozgan, Dept Math, Bandarabbas, Iran; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Jajarmi, A.] Univ Bojnord, Dept Elect Engn, Bojnurd, Iran | en_US |
| gdc.description.endpage | 5043 | en_US |
| gdc.description.issue | 21 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 5030 | en_US |
| gdc.description.volume | 24 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2772981348 | |
| gdc.identifier.wos | WOS:000448272400008 | |
| gdc.openalex.fwci | 4.9644013 | |
| gdc.openalex.normalizedpercentile | 0.96 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 23 | |
| gdc.plumx.crossrefcites | 22 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.scopuscites | 122 | |
| gdc.scopus.citedcount | 122 | |
| gdc.wos.citedcount | 110 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |