Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Mohammadzadeh, B. | |
dc.contributor.author | Neamaty, A. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2020-04-29T22:50:50Z | |
dc.date.available | 2020-04-29T22:50:50Z | |
dc.date.issued | 2013 | |
dc.department | Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D(0+)(alpha)u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < alpha <= 3, u(0) = u'(0) = 0, D-0(alpha-1),u(1) = beta u(xi), 0 < xi < 1, where D-0+(alpha) denotes Riemann-Liouville fractional derivative, beta is positive real number, beta xi(alpha-1) >= 2 Gamma(alpha), and f is continuous on [0, 1] x [0,infinity). As an application, one example is given to illustrate the main result. | en_US |
dc.identifier.doi | 10.1155/2013/847184 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.issn | 1687-0409 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/3535 | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi LTD | en_US |
dc.relation.ispartof | Abstract and Applied Analysis | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Calculus | en_US |
dc.title | Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems | tr_TR |
dc.title | Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |