Hyperspectral image compression using an online learning method
dc.authorid | Toreyin, Behcet Ugur/0000-0003-4406-2783 | |
dc.authorscopusid | 57219399185 | |
dc.authorscopusid | 9249500700 | |
dc.authorwosid | Ulku,, Irem/Ahd-8857-2022 | |
dc.authorwosid | Toreyin, Behcet Ugur/A-6780-2012 | |
dc.contributor.author | Ulku, Irem | |
dc.contributor.author | Toreyin, B. Ugur | |
dc.contributor.authorID | 19325 | tr_TR |
dc.date.accessioned | 2022-05-23T11:28:41Z | |
dc.date.available | 2022-05-23T11:28:41Z | |
dc.date.issued | 2015 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ulku, Irem; Toreyin, B. Ugur] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey; [Toreyin, B. Ugur] ODTU Yerleskesi, TUBITAK UZAY Sci & Tech Res Council Turkey, Space Technol Inst, TR-06800 Ankara, Turkey | en_US |
dc.description | Toreyin, Behcet Ugur/0000-0003-4406-2783 | en_US |
dc.description.abstract | A hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | Ülkü, İrem; Töreyin, B. Uğur (2015). "Hyperspectral image compression using an online learning method", Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9501. | en_US |
dc.identifier.doi | 10.1117/12.2178133 | |
dc.identifier.isbn | 9781628416176 | |
dc.identifier.issn | 0277-786X | |
dc.identifier.issn | 1996-756X | |
dc.identifier.scopus | 2-s2.0-84938888890 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.uri | https://doi.org/10.1117/12.2178133 | |
dc.identifier.volume | 9501 | en_US |
dc.identifier.wos | WOS:000357931500003 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Spie-int Soc Optical Engineering | en_US |
dc.relation.ispartof | Conference on Satellite Data Compression, Communications, and Processing XI -- APR 23-24, 2015 -- Baltimore, MD | en_US |
dc.relation.ispartofseries | Proceedings of SPIE | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 3 | |
dc.subject | Hyperspectral Compression | en_US |
dc.subject | Sparse Coding | en_US |
dc.subject | Hyperspectral Imagery | en_US |
dc.subject | Basis Pursuit | en_US |
dc.subject | Online Learning | en_US |
dc.title | Hyperspectral image compression using an online learning method | tr_TR |
dc.title | Hyperspectral Image Compression Using an Online Learning Method | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: