Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyperspectral image compression using an online learning method

dc.authorid Toreyin, Behcet Ugur/0000-0003-4406-2783
dc.authorscopusid 57219399185
dc.authorscopusid 9249500700
dc.authorwosid Ulku,, Irem/Ahd-8857-2022
dc.authorwosid Toreyin, Behcet Ugur/A-6780-2012
dc.contributor.author Ulku, Irem
dc.contributor.author Toreyin, B. Ugur
dc.contributor.authorID 19325 tr_TR
dc.date.accessioned 2022-05-23T11:28:41Z
dc.date.available 2022-05-23T11:28:41Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Ulku, Irem; Toreyin, B. Ugur] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey; [Toreyin, B. Ugur] ODTU Yerleskesi, TUBITAK UZAY Sci & Tech Res Council Turkey, Space Technol Inst, TR-06800 Ankara, Turkey en_US
dc.description Toreyin, Behcet Ugur/0000-0003-4406-2783 en_US
dc.description.abstract A hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citation Ülkü, İrem; Töreyin, B. Uğur (2015). "Hyperspectral image compression using an online learning method", Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9501. en_US
dc.identifier.doi 10.1117/12.2178133
dc.identifier.isbn 9781628416176
dc.identifier.issn 0277-786X
dc.identifier.issn 1996-756X
dc.identifier.scopus 2-s2.0-84938888890
dc.identifier.scopusquality Q4
dc.identifier.uri https://doi.org/10.1117/12.2178133
dc.identifier.volume 9501 en_US
dc.identifier.wos WOS:000357931500003
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Spie-int Soc Optical Engineering en_US
dc.relation.ispartof Conference on Satellite Data Compression, Communications, and Processing XI -- APR 23-24, 2015 -- Baltimore, MD en_US
dc.relation.ispartofseries Proceedings of SPIE
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Hyperspectral Compression en_US
dc.subject Sparse Coding en_US
dc.subject Hyperspectral Imagery en_US
dc.subject Basis Pursuit en_US
dc.subject Online Learning en_US
dc.title Hyperspectral image compression using an online learning method tr_TR
dc.title Hyperspectral Image Compression Using an Online Learning Method en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: