Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyperspectral image compression using an online learning method

dc.contributor.authorÜlkü, İrem
dc.contributor.authorTöreyin, B. Uğur
dc.contributor.authorID19325tr_TR
dc.date.accessioned2022-05-23T11:28:41Z
dc.date.available2022-05-23T11:28:41Z
dc.date.issued2015
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractA hyperspectral image compression method is proposed using an online dictionary learning approach. The online learning mechanism is aimed at utilizing least number of dictionary elements for each hyperspectral image under consideration. In order to meet this "sparsity constraint", basis pursuit algorithm is used. Hyperspectral imagery from AVIRIS datasets are used for testing purposes. Effects of non-zero dictionary elements on the compression performance are analyzed. Results indicate that, the proposed online dictionary learning algorithm may be utilized for higher data rates, as it performs better in terms of PSNR values, as compared with the state-of-the-art predictive lossy compression schemes. © 2015 SPIE.en_US
dc.identifier.citationÜlkü, İrem; Töreyin, B. Uğur (2015). "Hyperspectral image compression using an online learning method", Proceedings of SPIE - The International Society for Optical Engineering, Vol. 9501.en_US
dc.identifier.doi10.1117/12.2178133
dc.identifier.isbn9781628416176
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/20.500.12416/5535
dc.identifier.volume9501en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBasis Pursuiten_US
dc.subjectHyperspectral Compressionen_US
dc.subjectHyperspectral Imageryen_US
dc.subjectOnline Learningen_US
dc.subjectSparse Codingen_US
dc.titleHyperspectral image compression using an online learning methodtr_TR
dc.titleHyperspectral Image Compression Using an Online Learning Methoden_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: