Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Enhancing Efficiency of an Old Hydropower Plant Turbine Through a Mutual Runner Design and Component Optimization

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Sage Publications Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

This paper presents a systematic approach to the rehabilitation process of Sar & imath;yar HEPP, a hydroelectric power plant that has been operational for more than 50 years. Units 1 and 2 (U1-U2) were originally designed with a head of 93 m and a turbine power of 48.5 MW, while Units 3 and 4 (U3-U4) were designed with a lower head of 76.5 m but the same turbine power of 48.5 MW. A methodology combining reverse engineering and CFD analysis is developed to identify and evaluate the critical parameters that have an impact on the existing turbine performance. A hybrid design is proposed to replace the existing two different types of turbines, which reduces manufacturing costs and design time. The performance of the new hybrid design is evaluated in detail with CFD analysis. For both existing and hybrid design, steady and unsteady analyses are performed. For all of the situations hill charts are obtained and the comparison of the old and new hybrid design is discussed in detail. The results show that the new design has improved the efficiency of the turbine and the power plant, resulting in a 14.2% efficiency increase in U1-U2 and a 21% system efficiency improvement in U3-U4. This study provides a guide to designers and practitioners for the rehabilitation of hydroelectric power plants.

Description

Ulucak, Oguzhan/0000-0002-2063-2553

Keywords

Cfd, Francis Turbine, Reverse Engineering, Rehabilitation, Transient Analysis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2

Source

Volume

Issue

Start Page

End Page